论文标题
了解接受场和网络复杂性在神经网络引导的TEM图像分析中的影响
Understanding the Influence of Receptive Field and Network Complexity in Neural-Network-Guided TEM Image Analysis
论文作者
论文摘要
训练有素的神经网络是分析不断增加的科学图像数据的有前途的工具,但尚不清楚如何最好地自定义这些网络以获得传输电子显微照片的独特功能。在这里,我们系统地检查神经网络结构选择如何影响神经网络细分或像素范围的晶体纳米颗粒与透射电子显微镜(TEM)图像中无定形背景的单独的晶体纳米颗粒。我们专注于脱钩接收场的影响,或者是从网络复杂性中导致输出决策的输入图像区域的影响,这决定了可训练的参数的数量。我们发现,对于依靠振幅对比以区分纳米颗粒和背景的低分辨率TEM图像,接受场不会显着影响分割性能。另一方面,对于依靠振幅和相比变化以识别纳米颗粒的组合的高分辨率TEM图像,接受场是提高性能的关键参数,尤其是在具有最小幅度对比度的图像中。我们的结果提供了有关如何使用TEM数据集适应神经网络的洞察力和指导。
Trained neural networks are promising tools to analyze the ever-increasing amount of scientific image data, but it is unclear how to best customize these networks for the unique features in transmission electron micrographs. Here, we systematically examine how neural network architecture choices affect how neural networks segment, or pixel-wise separate, crystalline nanoparticles from amorphous background in transmission electron microscopy (TEM) images. We focus on decoupling the influence of receptive field, or the area of the input image that contributes to the output decision, from network complexity, which dictates the number of trainable parameters. We find that for low-resolution TEM images which rely on amplitude contrast to distinguish nanoparticles from background, the receptive field does not significantly influence segmentation performance. On the other hand, for high-resolution TEM images which rely on a combination of amplitude and phase contrast changes to identify nanoparticles, receptive field is a key parameter for increased performance, especially in images with minimal amplitude contrast. Our results provide insight and guidance as to how to adapt neural networks for applications with TEM datasets.