论文标题

在预算中使用少量功能排名

Ranking with submodular functions on a budget

论文作者

Zhang, Guangyi, Tatti, Nikolaj, Gionis, Aristides

论文摘要

亚辅导最大化一直是许多重要的机器学习问题的骨干,并且在病毒营销,多元化,传感器放置等方面有应用。但是,在选择一组项目的背景下,主要限制了最大化下函数的研究。另一方面,许多现实世界应用都需要解决一组项目的排名解决方案。以前已经考虑过在子模函数最大化的上下文中排名的问题,但程度远低于项目选择公式。在本文中,我们探讨了一种新颖的表述,用于对具有下估值和预算限制的项目进行排名。我们将此问题称为最大值排名(MSR)。更详细地说,给定一组项目和一组非降低的子模块功能,其中每个功能都与预算关联,我们旨在找到一组项目的排名,以最大程度地提高预算约束下所有功能所获得的值的价值之和。对于MSR问题,我们提出了具有近似保证的实用算法的基数和背包型预算约束。此外,我们进行了经验评估,该评估证明了所提出的算法对强基础的卓越性能。

Submodular maximization has been the backbone of many important machine-learning problems, and has applications to viral marketing, diversification, sensor placement, and more. However, the study of maximizing submodular functions has mainly been restricted in the context of selecting a set of items. On the other hand, many real-world applications require a solution that is a ranking over a set of items. The problem of ranking in the context of submodular function maximization has been considered before, but to a much lesser extent than item-selection formulations. In this paper, we explore a novel formulation for ranking items with submodular valuations and budget constraints. We refer to this problem as max-submodular ranking (MSR). In more detail, given a set of items and a set of non-decreasing submodular functions, where each function is associated with a budget, we aim to find a ranking of the set of items that maximizes the sum of values achieved by all functions under the budget constraints. For the MSR problem with cardinality- and knapsack-type budget constraints we propose practical algorithms with approximation guarantees. In addition, we perform an empirical evaluation, which demonstrates the superior performance of the proposed algorithms against strong baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源