论文标题
爱因斯坦 - 加斯 - 鲍尼特黑洞的线性扰动
Linear perturbations of Einstein-Gauss-Bonnet black holes
论文作者
论文摘要
我们研究有关标量张量理论(更具体地说是Horndeski理论)中有关非旋转黑洞溶液的线性扰动。我们考虑两种承认已知毛茸茸的黑洞解决方案的特殊理论。第一个是爱因斯坦 - 斯卡尔 - 高斯 - 邦网理论,其中包含与标量场耦合的高斯 - 骨网术语,其黑洞溶液在一个小参数中作为扰动扩展,以测量偏离一般相关性的偏差。第二种,称为4维 - 内斯坦 - 加斯 - 邦纳特理论,可以看作是高维洛夫洛克理论的紧凑型,并接受了精确的黑洞溶液。我们研究了有关这些溶液的轴向和极性扰动,并将其运动方程式写为微分方程的一阶(径向)系统,这使我们能够研究无穷大的扰动的渐近行为,并在我们最近开发的算法之后在地平线上进行了地平线。对于轴向扰动,我们还获得了有效的Schrödinger样方程,具有明确表达电势和传播速度的表达式。我们看到,虽然爱因斯坦 - 斯卡尔 - 高斯 - 托网解决方案具有良好的行为扰动,但四维 - 内斯坦 - 内斯坦 - 加斯 - 加斯 - 邦纳特理论的解决方案表现出其在其地平线附近和无限限度的扰动的异常渐近行为,这使得对insoing和外面模式的定义变得不可能。这表明这些扰动的动力学与一般相对案例有很大不同,并且似乎是病态的。
We study linear perturbations about non rotating black hole solutions in scalar-tensor theories, more specifically Horndeski theories. We consider two particular theories that admit known hairy black hole solutions. The first one, Einstein-scalar-Gauss-Bonnet theory, contains a Gauss-Bonnet term coupled to a scalar field, and its black hole solution is given as a perturbative expansion in a small parameter that measures the deviation from general relativity. The second one, known as 4-dimensional-Einstein-Gauss-Bonnet theory, can be seen as a compactification of higher-dimensional Lovelock theories and admits an exact black hole solution. We study both axial and polar perturbations about these solutions and write their equations of motion as a first-order (radial) system of differential equations, which enables us to study the asymptotic behaviours of the perturbations at infinity and at the horizon following an algorithm we developed recently. For the axial perturbations, we also obtain effective Schrödinger-like equations with explicit expressions for the potentials and the propagation speeds. We see that while the Einstein-scalar-Gauss-Bonnet solution has well-behaved perturbations, the solution of the 4-dimensional-Einstein-Gauss-Bonnet theory exhibits unusual asymptotic behaviour of its perturbations near its horizon and at infinity, which makes the definition of ingoing and outgoing modes impossible. This indicates that the dynamics of these perturbations strongly differs from the general relativity case and seems pathological.