论文标题

具有超宽能量和动量匹配的SIC纳米线中的电子显微镜探测电子 - 光子相互作用

Electron microscopy probing electron-photon interactions in SiC nanowires with ultra-wide energy and momentum match

论文作者

Du, Jinlong, Chen, Jin-hui, Li, Yuehui, Shi, Ruochen, Wu, Mei, Xiao, Yun-Feng, Gao, Peng

论文摘要

纳米级材料通常会捕获光线并与其强烈相互作用,从而导致许多光子设备应用。光谱通常通过光谱探测光 - 摩擦的相互作用,但是,它具有一些局限性,例如衍射有限的空间分辨率,微小的动量转移和非连续激发/检测。在这项工作中,使用扫描透射电子显微镜 - 电子能量损耗光谱(Stem-Eels)具有超宽的能量和动量匹配和亚纳米空间分辨率,我们研究了单个SIC纳米线中的光学微腔谐振剂光谱。纵向Fabry-Perot(FP)共鸣模式和横向耳语模式(WGM)是同时激发和检测的,从近红外(〜1.2μm)到紫外线(〜0.2μm)的光谱状态,并且动量传递可能会在紫外线(〜0.2μm),并且动量传递可能会达到至108 cm {^^^^^^^{^^{^^^^^^^{^^^^{^^^^}^{还揭示了对纳米线谐振光谱的尺寸影响。此外,揭示了共振鳗的纳米级衰减长度,这是由SIC纳米线中强烈局部的电子 - 光子相互作用造成的。这项工作提供了一种新的替代技术,可以研究单个纳米线结构的光学谐振光谱,并探索介电纳米结构中的光 - 物质相互作用,这也是通过光子结构调节游离电子的有望。

Nanoscale materials usually can trap light and strongly interact with it leading to many photonic device applications. The light-matter interactions are commonly probed by optical spectroscopy, which, however, have some limitations such as diffraction-limited spatial resolution, tiny momentum transfer and non-continuous excitation/detection. In this work, using scanning transmission electron microscopy-electron energy loss spectroscopy (STEM-EELS) with ultra-wide energy and momentum match and sub-nanometer spatial resolution, we study the optical microcavity resonant spectroscopy in a single SiC nanowire. The longitudinal Fabry-Perot (FP) resonating modes and the transverse whispering-gallery modes (WGMs) are simultaneously excited and detected, which span from near-infrared (~ 1.2 μm) to ultraviolet (~ 0.2 μm) spectral regime and the momentum transfer can be ranging up to 108 cm{^{-1}}. The size effects on the resonant spectra of nanowires are also revealed. Moreover, the nanoscale decay length of resonant EELS is revealed, which is contributed by the strongly localized electron-photon interactions in the SiC nanowire. This work provides a new alternative technique to investigate the optical resonating spectroscopy of a single nanowire structure and to explore the light-matter interactions in dielectric nanostructures, which is also promising for modulating free electrons via photonic structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源