论文标题
在$ ku_g $ - 本地epovariant Sphere上
On the $KU_G$-local equivariant sphere
论文作者
论文摘要
模棱两可的复合物$ k $ - 理论和e象球形光谱是最基本的两个谱系光谱之一。对于一个奇数$ p $ - 组,我们计算了等激体频谱的定位的零同型绿色函数,相对于Equivariant复合物$ K $ - 理论。此外,在奇数循环$ p $ -groups的情况下,我们计算零均匀型tambara函子结构。
Equivariant complex $K$-theory and the equivariant sphere spectrum are two of the most fundamental equivariant spectra. For an odd $p$-group, we calculate the zeroth homotopy Green functor of the localization of the equivariant sphere spectrum with respect to equivariant complex $K$-theory. Further, we calculate the zeroth homotopy Tambara functor structure in the case of odd cyclic $p$-groups.