论文标题

$ g $ - 充电的分类在1D可逆性状态

A classification of $G$-charge Thouless pumps in 1D invertible states

论文作者

Bachmann, Sven, De Roeck, Wojciech, Fraas, Martin, Jappens, Tijl

论文摘要

最近,已经提出了一种理论,该理论对对称性保护拓扑(SPT)量子状态的环状过程进行了分类。对于旋转链的情况,即\ \一维玻色子SPT,该理论意味着循环过程由零维SPT进行了分类。这通常被描述为无泵的概括,原始的泵与对称组为$ u(1)$的情况相对应,并且泵由整数分类,该整数与每个周期泵送的电荷相对应。在本文中,我们在明确而严格的环境中回顾了这一一维理论,并为紧凑型对称群体$ g $的拟议分类提供了证明。

Recently, a theory has been proposed that classifies cyclic processes of symmetry protected topological (SPT) quantum states. For the case of spin chains, i.e.\ one-dimensional bosonic SPT's, this theory implies that cyclic processes are classified by zero-dimensional SPT's. This is often described as a generalization of Thouless pumps, with the original Thouless pump corresponding to the case where the symmetry group is $U(1)$ and pumps are classified by an integer that corresponds to the charge pumped per cycle. In this paper, we review this one-dimensional theory in an explicit and rigorous setting and we provide a proof for the completeness of the proposed classification for compact symmetry groups $G$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源