论文标题
在多种发行模型中考虑错误分类
Accounting for Misclassification in Multispecies Distribution Models
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
1. Species identification errors may have severe implications for the inference of species distributions. Accounting for misclassification in species distributions is an important topic of biodiversity research. With an increasing amount of biodiversity that comes from Citizen Science projects, where identification is not verified by preserved specimens, this issue is becoming more important. This has often been dealt with by accounting for false positives in species distribution models. However, the problem should account for misclassifications in general. 2. Here we present a flexible framework that accounts for misclassification in the distribution models and provides estimates of uncertainty around these estimates. The model was applied to data on viceroy, queen and monarch butterflies in the United States. The data were obtained from the iNaturalist database in the period 2019 to 2020. 3. Simulations and analysis of butterfly data showed that the proposed model was able to correct the reported abundance distribution for misclassification and also predict the true state for misclassified state.