论文标题
在结构假设下快速估算肯德尔的tau和有条件的肯德尔的tau矩阵
Fast estimation of Kendall's Tau and conditional Kendall's Tau matrices under structural assumptions
论文作者
论文摘要
肯德尔(Kendall)的tau和有条件的肯德尔(Kendall)的tau矩阵是随机矢量组件之间的多元(条件)依赖度量。对于大尺寸,可用的估计器在计算上是昂贵的,可以通过平均来改善。在基础肯德尔(Kendall)的tau和有条件的肯德尔(Kendall)的tau矩阵的结构假设下,我们引入了新的估计器,这些估计量大大降低了计算成本,同时保持相似的误差水平。在无条件的设置中,我们假设为重新排序,基础肯德尔的tau矩阵是块结构的,在每个非对角线块中具有恒定值。然后讨论对基础相关矩阵的后果。估计量通过平均(部分)在每个偏外块中的成对估计值来利用此块结构。派生的显式方差表达式表明它们提高了效率。在条件设置中,有条件的肯德尔的tau矩阵假定具有恒定的块结构,与条件变量无关。有条件的肯德尔(Kendall)的tau矩阵估计量与在无条件情况下的构造相似,通过平均(一部分)成对条件的肯德尔(Kendall)的tau估计量。我们建立了他们的联合渐近正态性,并表明与幼稚估计器相比,渐近方差降低。然后,我们进行了一项模拟研究,该研究显示无条件和条件估计器的性能提高。最后,估计器用于估计大量股票投资组合风险的价值;对先前的估计量相比,进行回测的改进。
Kendall's tau and conditional Kendall's tau matrices are multivariate (conditional) dependence measures between the components of a random vector. For large dimensions, available estimators are computationally expensive and can be improved by averaging. Under structural assumptions on the underlying Kendall's tau and conditional Kendall's tau matrices, we introduce new estimators that have a significantly reduced computational cost while keeping a similar error level. In the unconditional setting we assume that, up to reordering, the underlying Kendall's tau matrix is block-structured with constant values in each of the off-diagonal blocks. Consequences on the underlying correlation matrix are then discussed. The estimators take advantage of this block structure by averaging over (part of) the pairwise estimates in each of the off-diagonal blocks. Derived explicit variance expressions show their improved efficiency. In the conditional setting, the conditional Kendall's tau matrix is assumed to have a constant block structure, independently of the conditioning variable. Conditional Kendall's tau matrix estimators are constructed similarly as in the unconditional case by averaging over (part of) the pairwise conditional Kendall's tau estimators. We establish their joint asymptotic normality, and show that the asymptotic variance is reduced compared to the naive estimators. Then, we perform a simulation study which displays the improved performance of both the unconditional and conditional estimators. Finally, the estimators are used for estimating the value at risk of a large stock portfolio; backtesting illustrates the obtained improvements compared to the previous estimators.