论文标题
三种物种的漂移扩散模型
Three-species drift-diffusion models for memristors
论文作者
论文摘要
半导体中电子,孔和氧空位密度的漂移扩散方程系统,与泊松方程耦合到电势,在具有混合dirichlet-neumann边界条件的有界域中分析。该系统描述了Memristor设备中电荷载体的动力学。可以将回忆录视为具有记忆力的非线性电阻器,从而模仿了生物突触的电导响应。在快速释放的极限中,该系统将用于氧气空位密度和电势的漂移扩散系统减少,该系统通常用于神经形态应用。证明了以下结果:在任何空间维度上,全球对完整系统的薄弱解决方案的存在;解决方案对完整系统的均匀界限和两个空间维度的快速放松限制;减少系统的全球存在和弱唯一性分析。一个空间维度中的数值实验说明了解决方案的行为,并在电流 - 电压特征中再现磁滞效应。
A system of drift-diffusion equations for the electron, hole, and oxygene vacancy densities in a semiconductor, coupled to the Poisson equation for the electric potential, is analyzed in a bounded domain with mixed Dirichlet-Neumann boundary conditions. This system describes the dynamics of charge carriers in a memristor device. Memristors can be seen as nonlinear resistors with memory, mimicking the conductance response of biological synapses. In the fast-relaxation limit, the system reduces to a drift-diffusion system for the oxygene vacancy density and electric potential, which is often used in neuromorphic applications. The following results are proved: the global existence of weak solutions to the full system in any space dimension; the uniform-in-time boundedness of the solutions to the full system and the fast-relaxation limit in two space dimensions; the global existence and weak-strong uniqueness analysis of the reduced system. Numerical experiments in one space dimension illustrate the behavior of the solutions and reproduce hysteresis effects in the current-voltage characteristics.