论文标题
穆拉姆代码的色球环扩展
Chromospheric Extension of the MURaM Code
论文作者
论文摘要
需要详细的色球和电晕数值模型来了解太阳大气的加热。非局部热力学平衡(NLTE)辐射转移产生的影响使太阳能球的准确处理变得复杂。少数强,高度散射的线占据了染色层中的冷却和加热。另外,离子化氢的重组时间比动态时间尺度更长,需要对氢电离的非平衡(NE)处理。将Muram代码扩展到包括Bifrost代码中实现的太阳能球圈准确模拟所需的物理过程。这包括对氢离子化的时间依赖性处理,散射多组辐射转移方案以及NLTE辐射冷却的近似值。 NE和NLTE物理学的纳入对染色体结构的影响很大。氢离子化的NE处理导致更高的电离分数和在整个染色体的冷震间区域的第一个激发状态下的种群增强。另外,这可以防止氢气离子缓冲能量波动,从而导致更热的冲击和较酷的震动区域。地面和第一个激发状态的氢种群在上色球层上的$ 10^2-10^3 $增强,在过渡区域附近最高可达$ 10^9 $。包括必要的NLTE物理学会导致色球结构和动力学的显着差异。使用Muram代码的扩展版本计算的热力学和氢种群与以前的非平衡模拟一致。需要使用染色体的非平衡处理计算的电子数量和温度才能准确合成色圈光谱线。
Detailed numerical models of chromosphere and corona are required to understand the heating of the solar atmosphere. An accurate treatment of the solar chromosphere is complicated by the effects arising from Non Local Thermodynamic Equilibrium (NLTE) radiative transfer. A small number of strong, highly scattering lines dominate the cooling and heating in the chromosphere. Additionally, the recombination times of ionised hydrogen are longer than the dynamical timescales, requiring a non-equilibrium (NE) treatment of hydrogen ionisation. The MURaM code is extended to include the physical process required for accurate simulation of the solar chromosphere, as implemented in the Bifrost code. This includes a time-dependent treatment of hydrogen ionisation, a scattering multi-group radiation transfer scheme and approximations for NLTE radiative cooling. The inclusion of NE and NLTE physics has a large impact on the structure of the chromosphere; the NE treatment of hydrogen ionisation leads to a higher ionisation fraction and enhanced populations in the first excited state throughout cold inter-shock regions of the chromosphere. Additionally this prevents hydrogen ioniation from buffering energy fluctuations, leading to hotter shocks and cooler inter-shock regions. The hydrogen populations in the ground and first excited state are enhanced by $10^2-10^3$ in the upper chromosphere and up to $10^9$ near the transition region. Including the necessary NLTE physics leads to significant differences in chromospheric structure and dynamics. The thermodynamics and hydrogen populations calculated using the extended version of the MURaM code are consistent with previous non-equilibrium simulations. The electron number and temperature calculated using the non-equilibrium treatment of the chromosphere are required to accurately synthesise chromospheric spectral lines.