论文标题

基质代数之间线性图的组成和张量产物

Compositions and tensor products of linear maps between matrix algebras

论文作者

Kye, Seung-Hyeok

论文摘要

在这本半典型的论文中,我们首先以连贯的方式解释了当前量子信息理论的关键概念及其标准。其中包括可分离性/纠缠,两目标状态的施密特数量和块阳性率,以及矩阵代数之间的各种正图,如纠缠破坏地图,$ k $ -superposter的地图,完全正面的地图,$ k $ - $ -Possitive Maps。我们将从$ x \ mapsto s^*xs $给出的基本正地图的具体示例开始,然后使用choi矩阵和二元性来解释上述所有概念。我们还表明,CHOI矩阵可以无坐标定义。上述正图的概念产生了映射锥体,其双锥由线性图的组成或张量产物来表征。通过讨论,我们展示了一种身份,该身份通过CHOI矩阵连接基质代数之间的线性图的张量和线性图的组成。使用这种身份,我们表明,只有在涉及锥体绘制锥体并恢复上述概念的扩增并恢复各种已知标准时,对双锥的描述才有可能。作为身份的另一个应用,我们构建了由扩增和分解而产生的各种映射锥,并根据张量产物为PPT(阳性部分转置)方形猜想提供了几种等效的陈述。

In this semi-expository paper, we first explain key notions from current quantum information theory and criteria for them in a coherent way. These include separability/entanglement, Schmidt numbers of bi-partite states and block-positivity, together with various kinds of positive maps between matrix algebras like entanglement breaking maps, $k$-superpositive maps, completely positive maps, $k$-positive maps. We will begin with concrete examples of elementary positive maps given by $x\mapsto s^*xs$, and use Choi matrices and duality to explain all the notions mentioned above. We also show that the Choi matrix can be defined free from coordinates. The above notions of positive maps give rise to mapping cones, whose dual cones are characterized in terms of compositions or tensor products of linear maps. Through the discussion, we exhibit an identity which connects tensor products and compositions of linear maps between matrix algebras through the Choi matrices. Using this identity, we show that the description of the dual cone with tensor products is possible only when the involving cones are mapping cones, and recover various known criteria with ampliation for the notions mentioned above. As another applications of the identity, we construct various mapping cones arising from ampliation and factorization, and provide several equivalent statements to PPT (positive partial transpose) square conjecture in terms of tensor products.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源