论文标题

通过机器学习和星系聚类来限制宇宙学:骆驼套套件

Constraining cosmology with machine learning and galaxy clustering: the CAMELS-SAM suite

论文作者

Perez, Lucia A., Genel, Shy, Villaescusa-Navarro, Francisco, Somerville, Rachel S., Gabrielpillai, Austen, Anglés-Alcázar, Daniel, Wandelt, Benjamin D., Yung, L. Y. Aaron

论文摘要

随着下一代大型星系调查上网,开发和理解分析大型天文数据的机器学习工具变得越来越重要。神经网络具有强大的功能,能够探测数据中的深层模式,但必须在大型和代表性的数据集上仔细培训。我们通过机器学习模拟(骆驼)项目开发并生成了一个新的宇宙学和天体物理学的新“驼峰”项目:骆驼 - 萨姆,包括一千个黑暗模拟,仅对(100 $ h^{ - 1} $ cmpc)$^3 $带有不同的宇宙学参数($ω_m$ and $ curagan cufragan curagan cufran cufran curagan)天体物理参数范围。作为概念概念,以大量和广泛的参数空间的模拟星系的力量概念概念,我们探测了简单的聚类摘要统计数据的力量,以在天体物理学上边缘化,并使用神经网络来约束宇宙学。我们使用$ 0.68 <$ r $ <27 \ h^{ - 1} $ cmpc的两点相关函数,计数和空隙概率函数以及探测非线性和线性比例。我们的宇宙学约束聚类在$ω_ {\ text {m}} $和$σ_8$上的3-8 $ \%$误差左右,我们探索了各种星系选择,星系采样以及聚类统计数据对这些约束的选择的效果。我们还探讨了这些聚类统计信息如何限制圣克鲁斯·萨姆(Santa Cruz Sam)中的关键恒星和银河反馈参数。骆驼萨姆(Camels-SAM)与其他骆驼一起公开发行,并为机器物理学中的许多应用程序提供了巨大的潜力:https://camels-sam.readthedocs.io。

As the next generation of large galaxy surveys come online, it is becoming increasingly important to develop and understand the machine learning tools that analyze big astronomical data. Neural networks are powerful and capable of probing deep patterns in data, but must be trained carefully on large and representative data sets. We developed and generated a new `hump' of the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) project: CAMELS-SAM, encompassing one thousand dark-matter only simulations of (100 $h^{-1}$ cMpc)$^3$ with different cosmological parameters ($Ω_m$ and $σ_8$) and run through the Santa Cruz semi-analytic model for galaxy formation over a broad range of astrophysical parameters. As a proof-of-concept for the power of this vast suite of simulated galaxies in a large volume and broad parameter space, we probe the power of simple clustering summary statistics to marginalize over astrophysics and constrain cosmology using neural networks. We use the two-point correlation function, count-in-cells, and the Void Probability Function, and probe non-linear and linear scales across $0.68<$ R $<27\ h^{-1}$ cMpc. Our cosmological constraints cluster around 3-8$\%$ error on $Ω_{\text{M}}$ and $σ_8$, and we explore the effect of various galaxy selections, galaxy sampling, and choice of clustering statistics on these constraints. We additionally explore how these clustering statistics constrain and inform key stellar and galactic feedback parameters in the Santa Cruz SAM. CAMELS-SAM has been publicly released alongside the rest of CAMELS, and offers great potential to many applications of machine learning in astrophysics: https://camels-sam.readthedocs.io.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源