论文标题
在不确定的特征位置下,概率的正常旋转旋转优化的概率正常两性约束
The Probabilistic Normal Epipolar Constraint for Frame-To-Frame Rotation Optimization under Uncertain Feature Positions
论文作者
论文摘要
两种相机视图的相对姿势的估计是计算机视觉中的一个基本问题。 Kneip等。提议通过引入正常的异地约束(NEC)来解决此问题。但是,他们的方法没有考虑到不确定性,因此估计的相对姿势的准确性高度取决于目标框架中的精确特征位置。在这项工作中,我们介绍了通过在特征位置考虑到各向异性和不均匀的不确定性来克服这种限制的概率正常表现约束(PNEC)。为此,我们提出了一个新颖的目标函数,以及有效的优化方案,该方案在维持实时性能的同时有效地最小化了我们的目标。在合成数据的实验中,我们证明了与原始NEC和几种流行的相对旋转估计算法相比,新型PNEC产生的旋转估计值更准确。此外,我们将所提出的方法集成到最先进的单眼旋转式探测系统中,并为现实世界中的Kitti数据集提供一致的改进结果。
The estimation of the relative pose of two camera views is a fundamental problem in computer vision. Kneip et al. proposed to solve this problem by introducing the normal epipolar constraint (NEC). However, their approach does not take into account uncertainties, so that the accuracy of the estimated relative pose is highly dependent on accurate feature positions in the target frame. In this work, we introduce the probabilistic normal epipolar constraint (PNEC) that overcomes this limitation by accounting for anisotropic and inhomogeneous uncertainties in the feature positions. To this end, we propose a novel objective function, along with an efficient optimization scheme that effectively minimizes our objective while maintaining real-time performance. In experiments on synthetic data, we demonstrate that the novel PNEC yields more accurate rotation estimates than the original NEC and several popular relative rotation estimation algorithms. Furthermore, we integrate the proposed method into a state-of-the-art monocular rotation-only odometry system and achieve consistently improved results for the real-world KITTI dataset.