论文标题

普世系统的可分离性和和谐

Separability and harmony in ecumenical systems

论文作者

Marin, Sonia, Pereira, Luiz Carlos, Pimentel, Elaine, Sales, Emerson

论文摘要

对平稳结合逻辑的追求,以使经典和直觉逻辑的连接可以在和平中共存,这是一个令人着迷的研究主题,几十年来。 2015年,达格·普拉维茨(Dag Prawitz)提出了一种自然扣除系统,用于普世的一阶逻辑。我们通过为其提出{\ em Pure}顺序的微积分版本来开始这项工作,从某种意义上说,在不使用其他连接器的情况下引入了连接剂。为此,我们以额外的环境(Stoup)延长了序列,并定义了极性的普遍概念。最后,我们将这些想法顺利扩展到处理方式,为普世模态逻辑提供纯标记和嵌套系统。

The quest of smoothly combining logics so that connectives from classical and intuitionistic logics can co-exist in peace has been a fascinating topic of research for decades now. In 2015, Dag Prawitz proposed a natural deduction system for an ecumenical first-order logic. We start this work by proposing a {\em pure} sequent calculus version for it, in the sense that connectives are introduced without the use of other connectives. For doing this, we extend sequents with an extra context, the stoup, and define the ecumenical notion of polarities. Finally, we smoothly extend these ideas for handling modalities, presenting pure labeled and nested systems for ecumenical modal logics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源