论文标题

有效的机器学习模型,用于快速评估高渗透合金的弹性性能

Efficient machine-learning model for fast assessment of elastic properties of high-entropy alloys

论文作者

Vazquez, Guillermo, Singh, Prashant, Sauceda, Daniel, Couperthwaite, Richard, Britt, Nicholas, Youssef, Khaled, Johnson, Duane D., Arróyave, Raymundo

论文摘要

我们将基于描述符的刚度矩阵和弹性模型的分析模型与平均场方法相结合,以加速对高渗透合金(例如强度和延展性)技术有用的特性的评估。弹性属性的模型训练使用确定独立筛选(SIS)和稀疏操作员(SO)方法,得出具有有意义的原子特征构建的最佳分析模型以预测目标属性。使用由NB-MO-TA-W-V难治合金的二元和三元子集确定的弹性特性的数据库培训计算廉价的分析描述符。从指数较大的特征空间中提取的最佳弹性摩西模型,对目标属性的预测非常准确,类似于或更好,与其他模型相似或更好,并经过了现有实验的验证。我们还表明,电负性方差和弹性模子可以直接预测难治性HEAS的延展性和屈服强度的趋势,并揭示了有希望的合金浓度区域。

We combined descriptor-based analytical models for stiffness-matrix and elastic-moduli with mean-field methods to accelerate assessment of technologically useful properties of high-entropy alloys, such as strength and ductility. Model training for elastic properties uses Sure-Independence Screening (SIS) and Sparsifying Operator (SO) method yielding an optimal analytical model, constructed with meaningful atomic features to predict target properties. Computationally inexpensive analytical descriptors were trained using a database of the elastic properties determined from density functional theory for binary and ternary subsets of Nb-Mo-Ta-W-V refractory alloys. The optimal Elastic-SISSO models, extracted from an exponentially large feature space, give an extremely accurate prediction of target properties, similar to or better than other models, with some verified from existing experiments. We also show that electronegativity variance and elastic-moduli can directly predict trends in ductility and yield strength of refractory HEAs, and reveals promising alloy concentration regions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源