论文标题
哈勃参数和膨胀率功能数据的潜力减轻哈勃张力
Potentialities of Hubble parameter and expansion rate function data to alleviate Hubble tension
论文作者
论文摘要
利用高斯流程(GP),我们获得了对哈勃常数的改进估计,$ h_0 = 70.41 \ pm1.58 $ km s $ s $^{ - 1} $ mpc $^{ - 1} $,使用Hubble参数[$ h(z)$来自cosmic chremeter(z)$ cCH(CCH)$ EDECTION $ EDIA $ EDIA(Z)$ [$ h(z)$]超新星,数据。我们还使用CCH数据,包括具有完整协方差矩阵的数据和$ e(z)$数据来获得$ h_0 = 72.34 _ { - 1.92}^{+1.90} $ 1.90} $ s $ s $ s $ s $^{ - 1} $ mpc $^{ - 1} $ grouct and cosix and cosirciack and coerix copriance and coerix and cosirciact的coviance and copiact and copiact and copiact and copiact and copiact and coceriact的信息, $ H_0 $。这些结果高于通过直接用GP重建CCH数据获得的结果。为了估算未来CCH数据的潜力,我们模拟了两组$ h(z)$数据,并使用它们来限制$ h_0 $,通过使用GP重建或与$ e(z)$数据拟合。我们发现,通过将$ h_0 $ h_0 $值推向$ \ sim70 $ km s $ s $^{ - 1} $ mpc $^{ - 1} $,模拟$ h(z)$数据减轻$ h_0 $张力。我们还发现,$ h(z)$ + $ e(z)$数据有利于$ h_0 $的较高值,这也可以通过限制$ h_0 $的平面协调模型中的$ h_0 $和2阶Taylor扩展为$ h(z)$。总而言之,我们得出的结论是,更多,更好的CCH数据以及$ e(z)$数据可以为解决$ h_0 $张力提供一个新的有用的观点。
Taking advantage of Gaussian process (GP), we obtain an improved estimate of the Hubble constant, $H_0=70.41\pm1.58$ km s$^{-1}$ Mpc$^{-1}$, using Hubble parameter [$H(z)$] from cosmic chronometers (CCH) and expansion rate function [$E(z)$], extracted from type Ia supernovae, data. We also use CCH data, including the ones with full covariance matrix, and $E(z)$ data to obtain a determination of $H_0=72.34_{-1.92}^{+1.90}$ km s$^{-1}$ Mpc$^{-1}$, which implies that the involvement of full covariance matrix results in higher values and uncertainties of $H_0$. These results are higher than those obtained by directly reconstructing CCH data with GP. In order to estimate the potential of future CCH data, we simulate two sets of $H(z)$ data and use them to constrain $H_0$ by either using GP reconstruction or fitting them with $E(z)$ data. We find that simulated $H(z)$ data alleviate $H_0$ tension by pushing $H_0$ values higher towards $\sim70$ km s$^{-1}$ Mpc$^{-1}$. We also find that joint $H(z)$ + $E(z)$ data favor higher values of $H_0$, which is also confirmed by constraining $H_0$ in the flat concordance model and 2-order Taylor expansion of $H(z)$. In summary, we conclude that more and better-quality CCH data as well as $E(z)$ data can provide a new and useful perspective on resolving $H_0$ tension.