论文标题

神经全球快门:学会从具有全球重置功能的滚动快门摄像头还原视频

Neural Global Shutter: Learn to Restore Video from a Rolling Shutter Camera with Global Reset Feature

论文作者

Wang, Zhixiang, Ji, Xiang, Huang, Jia-Bin, Satoh, Shin'ichi, Zhou, Xiao, Zheng, Yinqiang

论文摘要

大多数计算机视觉系统将无失真的图像作为输入。但是,当相机和对象在捕获过程中进行运动时,使用广泛使用的滚动式滚轮(RS)图像传感器会遭受几何变形。已经对纠正RS扭曲进行了广泛的研究。但是,大多数现有工作都在很大程度上依赖于场景或动作的先前假设。此外,由于流动翘曲,运动估计步骤要么过于简单或计算效率低下,从而限制了它们的适用性。在本文中,我们使用全球复位功能(RSGR)使用滚动快门来恢复清洁全局快门(GS)视频。此功能使我们能够将纠正问题变成类似Deblur的问题,从而摆脱了不准确且昂贵的明确运动估计。首先,我们构建了一个捕获配对的RSGR/GS视频的光学系统。其次,我们开发了一种新型算法,该算法结合了空间和时间设计,以纠正空间变化的RSGR失真。第三,我们证明了现有的图像到图像翻译算法可以从扭曲的RSGR输入中恢复干净的GS视频,但是我们的算法通过特定的设计实现了最佳性能。我们的渲染结果不仅在视觉上吸引人,而且对下游任务也有益。与最先进的RS解决方案相比,我们的RSGR解决方案在有效性和效率方面都优越。考虑到如果不更改硬件,我们很容易实现,我们认为我们的RSGR解决方案可以潜在地替换RS解决方案,以使用低噪音和低预算的无失真视频。

Most computer vision systems assume distortion-free images as inputs. The widely used rolling-shutter (RS) image sensors, however, suffer from geometric distortion when the camera and object undergo motion during capture. Extensive researches have been conducted on correcting RS distortions. However, most of the existing work relies heavily on the prior assumptions of scenes or motions. Besides, the motion estimation steps are either oversimplified or computationally inefficient due to the heavy flow warping, limiting their applicability. In this paper, we investigate using rolling shutter with a global reset feature (RSGR) to restore clean global shutter (GS) videos. This feature enables us to turn the rectification problem into a deblur-like one, getting rid of inaccurate and costly explicit motion estimation. First, we build an optic system that captures paired RSGR/GS videos. Second, we develop a novel algorithm incorporating spatial and temporal designs to correct the spatial-varying RSGR distortion. Third, we demonstrate that existing image-to-image translation algorithms can recover clean GS videos from distorted RSGR inputs, yet our algorithm achieves the best performance with the specific designs. Our rendered results are not only visually appealing but also beneficial to downstream tasks. Compared to the state-of-the-art RS solution, our RSGR solution is superior in both effectiveness and efficiency. Considering it is easy to realize without changing the hardware, we believe our RSGR solution can potentially replace the RS solution in taking distortion-free videos with low noise and low budget.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源