论文标题

在实际处理系统上进行有效的稀疏矩阵矢量乘法

Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory Systems

论文作者

Giannoula, Christina, Fernandez, Ivan, Gómez-Luna, Juan, Koziris, Nectarios, Goumas, Georgios, Mutlu, Onur

论文摘要

几家制造商已经开始商业化近银行处理(PIM)架构。近银行PIM架构将简单的核心放置在靠近DRAM银行的核心,并通过减轻数据访问成本来对并行应用产生显着的性能和能量改进。真实的PIM系统可以提供高水平的并行性,较大的总内存带宽和低内存访问延迟,从而非常适合加速广泛使用的,内存的稀疏矩阵矢量乘法(SPMV)内核。 本文提供了对现实世界PIM体系结构的SPMV的首次综合分析,并提供了SparseP,这是第一个用于真实PIM架构的SPMV库。我们做出了两个关键的贡献。首先,我们设计有效的SPMV算法,以在当前和将来的PIM系统中加速SPMV内核,同时涵盖具有不同稀疏模式的各种稀疏矩阵。其次,我们在真正的PIM架构上对SPMV进行了首次全面分析。具体而言,我们对Upmem PIM系统中的SPMV内核进行了严格的实验分析,Upmem PIM系统是第一个公共可用的现实世界PIM架构。我们的广泛评估为软件设计人员和硬件架构师提供了新的见解和建议,以有效地加速实际PIM系统上的SPMV内核。有关我们在SPMV PIM执行,结果,见解和开源SparseP软件包[26]上的透彻表征的更多信息,我们将读者转移到论文的完整版本[3,4]。 SparseP软件包可在https://github.com/cmu-safari/sparsep上公开免费获得。

Several manufacturers have already started to commercialize near-bank Processing-In-Memory (PIM) architectures. Near-bank PIM architectures place simple cores close to DRAM banks and can yield significant performance and energy improvements in parallel applications by alleviating data access costs. Real PIM systems can provide high levels of parallelism, large aggregate memory bandwidth and low memory access latency, thereby being a good fit to accelerate the widely-used, memory-bound Sparse Matrix Vector Multiplication (SpMV) kernel. This paper provides the first comprehensive analysis of SpMV on a real-world PIM architecture, and presents SparseP, the first SpMV library for real PIM architectures. We make two key contributions. First, we design efficient SpMV algorithms to accelerate the SpMV kernel in current and future PIM systems, while covering a wide variety of sparse matrices with diverse sparsity patterns. Second, we provide the first comprehensive analysis of SpMV on a real PIM architecture. Specifically, we conduct our rigorous experimental analysis of SpMV kernels in the UPMEM PIM system, the first publicly-available real-world PIM architecture. Our extensive evaluation provides new insights and recommendations for software designers and hardware architects to efficiently accelerate the SpMV kernel on real PIM systems. For more information about our thorough characterization on the SpMV PIM execution, results, insights and the open-source SparseP software package [26], we refer the reader to the full version of the paper [3, 4]. The SparseP software package is publicly and freely available at https://github.com/CMU-SAFARI/SparseP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源