论文标题
通过字典学习对动态用户偏好进行建模以进行顺序推荐
Modeling Dynamic User Preference via Dictionary Learning for Sequential Recommendation
论文作者
论文摘要
捕获用户偏好中的动态对于更好地预测用户未来行为至关重要,因为用户偏好通常会随着时间的流逝而漂移。许多现有的推荐算法(包括浅层和深层)通常独立建模这种动态,即用户静态和动态偏好不是在相同的潜在空间下建模,这使得很难将它们融合以进行推荐。本文考虑了将用户的顺序行为嵌入用户偏好的潜在空间的问题,即将顺序转化为偏好。为此,我们将顺序推荐任务提出为字典学习问题,该任务学习:1)共享字典矩阵,每行代表跨用户共享的用户动态偏好的部分信号; 2)使用与门控复发单元(GRU)集成的深度自动回归模型的后验分配估计器,该模型可以选择词典的相关行以代表用户的动态偏好,该动态偏好是根据其过去的行为进行的。对Netflix数据集的定性研究表明,所提出的方法可以随着时间的推移捕获用户偏好漂移,并且对多个现实世界数据集的定量研究表明,与前所未有的因素化和神经序列推荐方法相比,所提出的方法可以实现更高的精度。该代码可在https://github.com/cchao0116/s2pnm-tkde2021上找到。
Capturing the dynamics in user preference is crucial to better predict user future behaviors because user preferences often drift over time. Many existing recommendation algorithms -- including both shallow and deep ones -- often model such dynamics independently, i.e., user static and dynamic preferences are not modeled under the same latent space, which makes it difficult to fuse them for recommendation. This paper considers the problem of embedding a user's sequential behavior into the latent space of user preferences, namely translating sequence to preference. To this end, we formulate the sequential recommendation task as a dictionary learning problem, which learns: 1) a shared dictionary matrix, each row of which represents a partial signal of user dynamic preferences shared across users; and 2) a posterior distribution estimator using a deep autoregressive model integrated with Gated Recurrent Unit (GRU), which can select related rows of the dictionary to represent a user's dynamic preferences conditioned on his/her past behaviors. Qualitative studies on the Netflix dataset demonstrate that the proposed method can capture the user preference drifts over time and quantitative studies on multiple real-world datasets demonstrate that the proposed method can achieve higher accuracy compared with state-of-the-art factorization and neural sequential recommendation methods. The code is available at https://github.com/cchao0116/S2PNM-TKDE2021.