论文标题

用贝叶斯过滤技术基于RFID的室内空间查询评估

RFID-Based Indoor Spatial Query Evaluation with Bayesian Filtering Techniques

论文作者

Hui, Bo, Wang, Wenlu, Yu, Jiao, Gong, Zhitao, Ku, Wei-Shinn, Sun, Min-Te, Lu, Hua

论文摘要

人们在室内空间(例如办公楼,地铁系统等)在日常生活中花费大量时间。因此,重要的是开发有效的室内空间查询算法来支持各种基于位置的应用程序。但是,室内空间与室外空间不同,因为用户必须遵循室内平面图进行动作。此外,在室内环境中的定位主要基于传感设备(例如RFID读取器)而不是GPS设备。因此,我们无法应用为新挑战设计为室外环境设计的现有空间查询评估技术。因为可以使用贝叶斯过滤技术来估计系统的状态,该系统随时间变化,该系统使用对系统进行的一系列嘈杂的测量序列进行了变化,因此,在这项研究中,我们提出了基于贝叶斯过滤的位置推断方法,作为评估室内空间查询的基础,并具有噪音噪声的RFID原始数据。此外,为在室内环境中跟踪对象位置而创建了两个新型模型,即室内步行图模型和锚点索引模型。基于推理方法和跟踪模型,我们开发了创新的室内范围和K最近的邻居(KNN)查询算法。我们通过使用合成数据和现实世界数据来验证解决方案。我们的实验结果表明,所提出的算法可以有效,有效地评估室内空间查询。我们在https://github.com/datasciencelab18/indoortoolkit上开放代码,数据和平面图。

People spend a significant amount of time in indoor spaces (e.g., office buildings, subway systems, etc.) in their daily lives. Therefore, it is important to develop efficient indoor spatial query algorithms for supporting various location-based applications. However, indoor spaces differ from outdoor spaces because users have to follow the indoor floor plan for their movements. In addition, positioning in indoor environments is mainly based on sensing devices (e.g., RFID readers) rather than GPS devices. Consequently, we cannot apply existing spatial query evaluation techniques devised for outdoor environments for this new challenge. Because Bayesian filtering techniques can be employed to estimate the state of a system that changes over time using a sequence of noisy measurements made on the system, in this research, we propose the Bayesian filtering-based location inference methods as the basis for evaluating indoor spatial queries with noisy RFID raw data. Furthermore, two novel models, indoor walking graph model and anchor point indexing model, are created for tracking object locations in indoor environments. Based on the inference method and tracking models, we develop innovative indoor range and k nearest neighbor (kNN) query algorithms. We validate our solution through use of both synthetic data and real-world data. Our experimental results show that the proposed algorithms can evaluate indoor spatial queries effectively and efficiently. We open-source the code, data, and floor plan at https://github.com/DataScienceLab18/IndoorToolKit.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源