论文标题
Lots-DR2中的附近星系:对无线电关系的非线性的见解
Nearby galaxies in LoTSS-DR2: insights into the non-linearity of the radio-SFR relation
论文作者
论文摘要
语境。宇宙射线和磁场是银河发展中的关键成分,可以调节恒星反馈和恒星形成。可以通过低频无线电连续观测来研究它们的性质,而没有热污染。目标。我们定义了附近76个(<30 mpc)星系的样本,并在无线电连续体中具有丰富的辅助数据,并从Chang-es和翠鸟调查中进行了红外调查,将在144 MHz的Lofar两米高的Sky Surve(Lotss)中观察到。方法。我们提供了其中45个地图,作为Lots Data Release 2(Lots-DR2)的一部分,我们在其中测量了磁通密度,并研究了集成和空间分辨的无线电光谱指数。我们使用总红外和h $α$ + 24- $μ$ m排放的星形构型率(SFR)研究无线电-SFR关系。结果。 144 MHz的Radio-SFR关系显然是超级线性的,$ l_ {144} \ propto sfr^{1.4-1.5} $。 144至$ \ $ \ $ 1400 MHz之间的平均集成频谱指数为$ \langleα\ rangle = -0.56 \ pm 0.14 $,与宇宙射线电子的注入光谱指数一致。然而,无线电光谱指数图显示了光谱指数的变化,这些光谱指数与星形郊区,尤其是在平面外区域中的星形郊区和较陡的光谱相关的频谱变化。我们发现具有高星形速率(SFR)的星系具有更陡峭的无线电光谱。我们发现与星系尺寸,质量和旋转速度相似的相关性。结论。更大且更大的星系是更好的电子热量计,这意味着CRE在星系中失去了更高的能量。这解释了超级线性无线电SFR的关系,更大,形成星形的星系是无线电的。我们提出了半含量的无线电关系,该关系采用了星系质量作为量热效率的代理。
Context. Cosmic rays and magnetic fields are key ingredients in galaxy evolution, regulating both stellar feedback and star formation. Their properties can be studied with low-frequency radio continuum observations, free from thermal contamination. Aims. We define a sample of 76 nearby (< 30 Mpc) galaxies, with rich ancillary data in the radio continuum and infrared from the CHANG-ES and KINGFISH surveys, which will be observed with the LOFAR Two-metre Sky Survey (LoTSS) at 144 MHz. Methods. We present maps for 45 of them as part of the LoTSS data release 2 (LoTSS-DR2), where we measure integrated flux densities and study integrated and spatially resolved radio spectral indices. We investigate the radio-SFR relation, using star-formation rates (SFR) from total infrared and H $α$ + 24-$μ$m emission. Results. The radio-SFR relation at 144 MHz is clearly super-linear with $L_{144} \propto SFR^{1.4-1.5}$. The mean integrated radio spectral index between 144 and $\approx$1400 MHz is $\langle α\rangle = -0.56 \pm 0.14$, in agreement with the injection spectral index for cosmic ray electrons (CRE). However, the radio spectral index maps show a variation of spectral indices with flatter spectra associated with star-forming regions and steeper spectra in galaxy outskirts and, in particular, in extra-planar regions. We found that galaxies with high star-formation rates (SFR) have steeper radio spectra; we find similar correlations with galaxy size, mass, and rotation speed. Conclusions. Galaxies that are larger and more massive are better electron calorimeters, meaning that the CRE lose a higher fraction of their energy within the galaxies. This explains the super-linear radio-SFR relation, with more massive, star-forming galaxies being radio bright. We propose a semi-calorimetric radio-SFR relation, which employs the galaxy mass as a proxy for the calorimetric efficiency.