论文标题
基于模拟器的解释和调试基于DNN的安全 - 关键系统中的危险触发事件
Simulator-based explanation and debugging of hazard-triggering events in DNN-based safety-critical systems
论文作者
论文摘要
当在安全 - 关键系统中使用深层神经网络(DNN)时,工程师应确定与测试期间观察到的与故障(即错误输出)相关的安全风险。对于DNN处理图像,工程师在视觉上检查所有引起故障的图像以确定它们之间的共同特征。这种特征对应于危险触发事件(例如,低照明),这是安全分析的重要输入。尽管内容丰富,但这种活动却昂贵且容易出错。 为了支持这种安全分析实践,我们提出了SEDE,该技术为诱导失败,现实世界图像中的共同点生成了可读的描述,并通过有效的再培训来改善DNN。 SEDE利用了通常用于网络物理系统的模拟器的可用性。它依靠遗传算法来驱动模拟器来生成与测试集中诱导失败的现实世界图像相似的图像。然后,它采用规则学习算法来得出以模拟器参数值捕获共同点的表达式。然后,派生表达式用于生成其他图像以重新训练和改进DNN。 随着DNN执行车载传感任务,SEDE成功地表征了危险触发事件,导致DNN精度下降。此外,SEDE启用了重新训练,从而导致DNN准确性的显着提高,高达18个百分点。
When Deep Neural Networks (DNNs) are used in safety-critical systems, engineers should determine the safety risks associated with failures (i.e., erroneous outputs) observed during testing. For DNNs processing images, engineers visually inspect all failure-inducing images to determine common characteristics among them. Such characteristics correspond to hazard-triggering events (e.g., low illumination) that are essential inputs for safety analysis. Though informative, such activity is expensive and error-prone. To support such safety analysis practices, we propose SEDE, a technique that generates readable descriptions for commonalities in failure-inducing, real-world images and improves the DNN through effective retraining. SEDE leverages the availability of simulators, which are commonly used for cyber-physical systems. It relies on genetic algorithms to drive simulators towards the generation of images that are similar to failure-inducing, real-world images in the test set; it then employs rule learning algorithms to derive expressions that capture commonalities in terms of simulator parameter values. The derived expressions are then used to generate additional images to retrain and improve the DNN. With DNNs performing in-car sensing tasks, SEDE successfully characterized hazard-triggering events leading to a DNN accuracy drop. Also, SEDE enabled retraining leading to significant improvements in DNN accuracy, up to 18 percentage points.