论文标题
用于低功率立方体应用的CDZNTE检测器的表征
Characterization of a CdZnTe detector for a low-power CubeSat application
论文作者
论文摘要
我们报告了为\ emph {MevCube} project设计的像素化CDZNTE检测器定制的光谱和成像性能:Cubesat平台上的小型康普顿望远镜。 \ emph {mevcube}有望覆盖$ 200 \; \ mathrm {kev} $和$ 4 \; \ mathrm {Mev} $之间的能量范围,并且性能与上一代较大的卫星相当。为了实现这一目标,需要以最大宽度(FWHM)的全部宽度和3美元的空间分辨率为单个检测器的几毫米。小型卫星中存在的严重功率限制要求检测器的电源读出电子设备非常低。我们的读取基于\ emph {indues}开发的VATA450.3 ASIC,功耗仅为$ 0.25 \; \ Mathrm {MW/Channel} $,在动态范围,噪声和线性方面表现出良好的性能。 A $ 2.0 \; \ Mathrm {Cm} \ Times 2.0 \; \ MathRM {CM} \ Times 1.5 \; \ MathRM {CM} $ CDZNTE检测器,具有自定义$ 8 \ times 8 $ 8 $ PIXEL ANODE结构由VATA450.3 ASIC读取。基于离散\ emph {amptek} a250f电荷敏感的预放大器和DRS4 ASIC的初步读出系统已实现。在$ 3 \%$ fwhm左右的能源分辨率以$ 662 \; \ mathrm {kev} $的伽马能测量;以$ 200 \; \ \ m atrm {kev} $的平均能量分辨率为$ 6.5 \%$,在$ 1 \; \ mathrm {mev} $上降至$ \ sillesim 2 \%2 \%$。可以实现$ 3 $ -D的空间分辨率,约为2 \,\ mathrm {mm} $。
We report spectral and imaging performance of a pixelated CdZnTe detector custom designed for the \emph{MeVCube} project: a small Compton telescope on a CubeSat platform. \emph{MeVCube} is expected to cover the energy range between $200\;\mathrm{keV}$ and $4\;\mathrm{MeV}$, with performance comparable to the last generation of larger satellites. In order to achieve this goal, an energy resolution of few percent in full width at half maximum (FWHM) and a $3$-D spatial resolution of few millimeters for the individual detectors are needed. The severe power constraints present in small satellites require very low power read-out electronics for the detector. Our read-out is based on the VATA450.3 ASIC developed by \emph{Ideas}, with a power consumption of only $0.25\;\mathrm{mW/channel}$, which exhibits good performance in terms of dynamic range, noise and linearity. A $2.0\;\mathrm{cm} \times 2.0\;\mathrm{cm} \times 1.5\;\mathrm{cm}$ CdZnTe detector, with a custom $8 \times 8$ pixel anode structure read-out by a VATA450.3 ASIC, has been tested. A preliminary read-out system for the cathode, based on a discrete \emph{Amptek} A250F charge sensitive pre-amplifier and a DRS4 ASIC, has been implemented. An energy resolution around $3\%$ FWHM has been measured at a gamma energy of $662\;\mathrm{keV}$; at $200\;\mathrm{keV}$ the average energy resolution is $6.5\%$, decreasing to $\lesssim 2\%$ at energies above $1\;\mathrm{MeV}$. A $3$-D spatial resolution of $\approx 2\,\mathrm{mm}$ is achieved.