论文标题
I-Razor:一种可区分的神经输入剃须刀,用于基于DNN的推荐系统中的特征选择和尺寸搜索
i-Razor: A Differentiable Neural Input Razor for Feature Selection and Dimension Search in DNN-Based Recommender Systems
论文作者
论文摘要
输入功能在基于DNN的推荐系统中起着至关重要的作用,该系统具有来自用户,项目,上下文和交互的数千个类别和连续的字段。嘈杂的功能和不适当的嵌入维度分配可能会恶化推荐系统的性能,并在模型培训和在线服务中引入不必要的复杂性。优化DNN模型的输入配置,包括功能选择和嵌入维度分配,已成为功能工程中的重要主题之一。但是,在现有的工业实践中,特征选择和维度搜索将顺序优化,即首先执行特征选择,然后进行维度搜索以确定每个选定功能的最佳尺寸大小。这样的顺序优化机制增加了培训成本和产生次优的输入配置的风险。为了解决这个问题,我们提出了一个可区分的神经输入剃须刀(I-Razor),该神经输入剃须刀能够进行特征选择和维度搜索的联合优化。具体而言,我们引入了一个端到端可区分模型,以了解每个功能不同嵌入区域的相对重要性。此外,提出了一种灵活的修剪算法,以同时实现特征滤波和尺寸推导。在点击率率(CTR)预测任务中的两个大规模公共数据集进行了大规模实验,证明了i-Razor在平衡模型复杂性和性能平衡方面的功效和优势。
Input features play a crucial role in DNN-based recommender systems with thousands of categorical and continuous fields from users, items, contexts, and interactions. Noisy features and inappropriate embedding dimension assignments can deteriorate the performance of recommender systems and introduce unnecessary complexity in model training and online serving. Optimizing the input configuration of DNN models, including feature selection and embedding dimension assignment, has become one of the essential topics in feature engineering. However, in existing industrial practices, feature selection and dimension search are optimized sequentially, i.e., feature selection is performed first, followed by dimension search to determine the optimal dimension size for each selected feature. Such a sequential optimization mechanism increases training costs and risks generating suboptimal input configurations. To address this problem, we propose a differentiable neural input razor (i-Razor) that enables joint optimization of feature selection and dimension search. Concretely, we introduce an end-to-end differentiable model to learn the relative importance of different embedding regions of each feature. Furthermore, a flexible pruning algorithm is proposed to achieve feature filtering and dimension derivation simultaneously. Extensive experiments on two large-scale public datasets in the Click-Through-Rate (CTR) prediction task demonstrate the efficacy and superiority of i-Razor in balancing model complexity and performance.