论文标题

在线安全关键控制的预测控制障碍功能

Predictive Control Barrier Functions for Online Safety Critical Control

论文作者

Breeden, Joseph, Panagou, Dimitra

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

This paper presents a methodology for constructing Control Barrier Functions (CBFs) that proactively consider the future safety of a system along a nominal trajectory, and effect corrective action before the trajectory leaves a designated safe set. Specifically, this paper presents a systematic approach for propagating a nominal trajectory on a receding horizon, and then encoding the future safety of this trajectory into a CBF. If the propagated trajectory is unsafe, then a controller satisfying the CBF condition will modify the nominal trajectory before the trajectory becomes unsafe. Compared to existing CBF techniques, this strategy is proactive rather than reactive and thus potentially results in smaller modifications to the nominal trajectory. The proposed strategy is shown to be provably safe, and then is demonstrated in simulated scenarios where it would otherwise be difficult to construct a traditional CBF. In simulation, the predictive CBF results in less modification to the nominal trajectory and smaller control inputs than a traditional CBF, and faster computations than a nonlinear model predictive control approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源