论文标题

部分可观测时空混沌系统的无模型预测

Machine Learning Integrated with Model Predictive Control for Imitative Optimal Control of Compression Ignition Engines

论文作者

Norouzi, Armin, Shahpouri, Saeid, Gordon, David, Winkler, Alexander, Nuss, Eugen, Abel, Dirk, Andert, Jakob, Shahbakhti, Mahdi, Koch, Charles Robert

论文摘要

压缩 - 点击引擎的高热效率和可靠性使其成为许多应用程序的首选。为此,需要减少污染物排放。一种解决方案是使用机器学习(ML)和模型预测控制(MPC)来最大程度地减少排放和燃料消耗,而无需向发动机控制器增加大量的计算成本。在本文中开发了ML,用于建模发动机性能和排放以及模仿线性参数变化(LPV)MPC的行为。使用基于支持向量机器的线性参数变化的发动机性能和排放模型,为4.5康明斯柴油发动机实现了模型预测控制器。与基线前馈生产控制器相比,这种在线优化的MPC解决方案在最大程度地降低\ NOX的排放和燃油消耗方面具有优势。为了降低此MPC的计算成本,深度学习方案旨在模仿开发控制器的行为。与康明斯生产控制器相比,模仿控制器在恒定负载下减少NOX排放的性能与在线优化的MPC相似。此外,与在线MPC优化相比,模仿控制器需要少50倍的计算时间。

The high thermal efficiency and reliability of the compression-ignition engine makes it the first choice for many applications. For this to continue, a reduction of the pollutant emissions is needed. One solution is the use of machine learning (ML) and model predictive control (MPC) to minimize emissions and fuel consumption, without adding substantial computational cost to the engine controller. ML is developed in this paper for both modeling engine performance and emissions and for imitating the behaviour of an Linear Parameter Varying (LPV) MPC. Using a support vector machine-based linear parameter varying model of the engine performance and emissions, a model predictive controller is implemented for a 4.5 Cummins diesel engine. This online optimized MPC solution offers advantages in minimizing the \nox~emissions and fuel consumption compared to the baseline feedforward production controller. To reduce the computational cost of this MPC, a deep learning scheme is designed to mimic the behavior of the developed controller. The performance in reducing NOx emissions at a constant load by the imitative controller is similar to that of the online optimized MPC compared to the Cummins production controller. In addition, the imitative controller requires 50 times less computation time compared to that of the online MPC optimization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源