论文标题

正式和算法有效的LULC更改模型构建环境

A Formally and Algorithmically Efficient LULC change Model-Building Environment

论文作者

Mazy, François-Rémi, Longaretti, Pierre-Yves

论文摘要

在环境科学中,使用空间明显的土地利用和土地覆盖模型(LULC)变更模型在公共决策过程中很普遍。但是,看来这些模型遭受了重大偏见和缺点,其来源可能是数学,概念或算法。我们正式化了一个区分校准估计模块和分配模块的建模环境。我们提出了一种基于内核密度估计的准确校准估计方法,并详细介绍了无偏分配算法。此外,提出了一种评估LULC变更模型的方法,并允许我们在各种方面进行比较(准确性,偏见,计算效率)。基于实际土地使用图的案例研究,但使用已知的(强制)过渡概率。看来,我们提出的方法的估计误差比最佳现有软件大大改善。此外,这些方法需要用户对很少的参数进行规范,并且在数值上是有效的。本文概述了我们的LULC更改建模框架;即将发表的论文将详细介绍其各种形式和算法的成分。

The use of spatially explicit land use and land cover (LULC) change models is widespread in environmental sciences and of interest in public decision-help. However, it appears that these models suffer from significant biases and shortcomings, the sources of which can be mathematical, conceptual or algorithmic. We formalize a modeling environment that distinguishes a calibration-estimation module and an allocation module. We propose an accurate calibration-estimation method based on kernel density estimation and detail an unbiased allocation algorithm. Moreover, a method of evaluation of LULC change models is presented and allows us to compare them on various fronts (accuracy, biases, computational efficiency). A case study based on a real land use map but with known (enforced) transition probabilities is used. It appears that the estimation error of the methods we propose is substantially improved over the best existing software. Moreover, these methods require the specification of very few parameters by the user, and are numerically efficient. This article presents an overview of our LULC change modeling framework; its various formal and algorithmic constituents will be detailed in forthcoming papers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源