论文标题
标准纤维函子
Normed Fiber Functors
论文作者
论文摘要
由高盛 - iwahori(Goldman-iwahori),一般线性群体$ \ operatatorName {gl} _n $上的bruhat-tits建筑物可以描述为$ \ ell^n $上的非架构$ \ ell $。通过Tannakian形式主义,我们将此图片概括为对$ \ ell $上的一个不受影响的还原$ g $的bruhat-tits建筑物的描述,作为$ g $的特殊Parahoric积分模型的标准纤维函数的一组规范。我们还提供了与建筑物点相关的帕哈里克组方案的模量学描述,作为由相应规范定义的晶格链的张量自动形构成方案。
By Goldman-Iwahori, the Bruhat-Tits building of the general linear group $\operatorname{GL}_n$ over a local field $\ell$ can be described as the set of non-archimedean norms on $\ell^n$. Via a Tannakian formalism, we generalize this picture to a description of the Bruhat-Tits building of an unramified reductive group $G$ over $\ell$ as the set of norms on the standard fiber functor of a special parahoric integral model of $G$. We also give a moduli-theoretic description of the parahoric group scheme associated to a point of the building as the group scheme of tensor automorphisms of the lattice chains defined by the corresponding norm.