论文标题

室温门可调的非互惠电荷传输晶格匹配的INSB/CDTE异质结构

Room Temperature Gate Tunable Non Reciprocal Charge Transport in Lattice Matched InSb/CdTe Heterostructures

论文作者

Li, Lun, Wu, Yuyang, Liu, Xiaoyang, Ruan, Hanzhi, Zhi, Zhenghang, Liu, Jiuming, Zhang, Yong, Huang, Puyang, Ji, Yuchen, Tang, Chenjia, Yang, Yumeng, Che, Renchao, Kou, Xufeng

论文摘要

对称性的操作提供了一种有效的方法来调整固态系统中的物理订单。随着反转和时反转对称性的破坏,非重新磁通磁电流可能会出现在各种非磁系统中以富集自旋物理学。在这里,我们报告了晶格匹配的INSB/CDTE膜中的单向磁电阻(UMR)的观察到室温。 Benefiting from the strong built-in electric field of $0.13 \mathrm{~V} \cdot \mathrm{nm}^{-1}$ in the hetero-junction region, the resulting Rashba-type spin-orbit coupling and quantum confinement warrant stable angular-dependent second-order charge current with the non-reciprocal coefficient 1-2 orders of magnitude larger than most 298 K处的非中心对称材料。更重要的是,这种异质结构构型可实现高效的栅极调整,使整流响应增强UMR振幅的增强40%。我们的结果主张狭窄的差距半导体的混合动力系统,具有稳健的二维界面自旋纹理,作为追求可控制的手性旋转轨道设备和应用的合适平台。

The manipulation of symmetry provides an effective way to tailor the physical orders in solid-state systems. With the breaking of both the inversion and time-reversal symmetries, non-reciprocal magneto-transport may emerge in assorted non-magnetic systems to enrich spintronic physics. Here, we report the observation of the uni-directional magneto-resistance (UMR) in the lattice-matched InSb/CdTe film up to room temperature. Benefiting from the strong built-in electric field of $0.13 \mathrm{~V} \cdot \mathrm{nm}^{-1}$ in the hetero-junction region, the resulting Rashba-type spin-orbit coupling and quantum confinement warrant stable angular-dependent second-order charge current with the non-reciprocal coefficient 1-2 orders of magnitude larger than most non-centrosymmetric materials at 298 K. More importantly, this heterostructure configuration enables highly-efficient gate tuning of the rectification response in which the enhancement of the UMR amplitude by 40% is realized. Our results advocate the narrow-gap semiconductor-based hybrid system with the robust two-dimensional interfacial spin texture as a suitable platform for the pursuit of controllable chiral spin-orbit devices and applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源