论文标题

从点大气湍流测量的超级巨星风场

Superstatistical wind fields from point-wise atmospheric turbulence measurements

论文作者

Friedrich, Jan, Moreno, Daniela, Sinhuber, Michael, Waechter, Matthias, Peinke, Joachim

论文摘要

在大气科学中,准确的湍流风场模型变得越来越重要,例如,用于确定风园的时空相关性,涡轮转子和叶片上个体负载的估计,或建模大气云中粒子扰动相互作用在大气云中或污染物在Urban Wettings中的分布。由于在广泛的尺度上解决磁场的艰巨任务,通常必须诉诸于满足特定,经验观察到的特性的随机风场模型。在这里,我们提出了一个新的模型,用于生成合成风场的模型,该模型可以作为众所周知的Mann模型的扩展,用于风能科学中的流入湍流。尽管这种高斯随机场模型仅控制二阶统计(即速度相关张量或动能光谱),但我们明确表明我们的扩展模型也模仿了高阶统计的效果。最重要的是,凭经验观察到的小规模间歇性现象可以被视为大气湍流的关键特征之一,以高度准确性且计算成本相当低。我们的方法基于最近开发的湍流速度场的多点统计描述[J. Friedrich等人,J。Phys。复杂的。 2 045006(2021)],由多变量高斯统计数据和波动协方差组成。我们证明了如何从气象桅杆阵列中的一定数量的点测量数据上限制这种“超级巨星”风场。

Accurate models of turbulent wind fields have become increasingly important in the atmospheric sciences, e.g., for the determination of spatiotemporal correlations in wind parks, the estimation of individual loads on turbine rotor and blades, or for the modeling of particle-turbulence interaction in atmospheric clouds or pollutant distributions in urban settings. Due to the prohibitive task of resolving the fields across a broad range of scales, one oftentimes has to resort to stochastic wind field models that fulfill specific, empirically observed, properties. Here, we present a new model for the generation of synthetic wind fields that can be apprehended as an extension of the well-known Mann model for inflow turbulence in the wind energy sciences. Whereas such Gaussian random field models solely control second-order statistics (i.e., velocity correlation tensors or kinetic energy spectra), we explicitly show that our extended model emulates the effects of higher-order statistics as well. Most importantly, the empirically observed phenomenon of small-scale intermittency, which can be regarded as one of the key features of atmospheric turbulent flows, is reproduced with high accuracy and at considerably low computational cost. Our method is based on a recently developed multipoint statistical description of turbulent velocity fields [J. Friedrich et al., J. Phys. Complex. 2 045006 (2021)] and consists of a superposition of multivariate Gaussian statistics with fluctuating covariances. We demonstrate exemplarily how such "superstatistical" wind fields can be constrained on a certain number of point-wise measurement data from a meteorological mast array.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源