论文标题
使用纳米磁铁对旋转矩阵的量子控制
Quantum Control of Spin Qubits Using Nanomagnets
论文作者
论文摘要
单量门门是通用量子计算机的重要组成部分。如果没有选择性的单个Qubits,则无法实现量子算法的可扩展实现。当量子位是晶格上的离散点或区域时,由于难以将经典无脱水场定位并限制在少量空间中,因此在纳米级处的磁性旋转量子位的选择性解决方案仍然是一个挑战。本文中,我们提出了一种使用纳米级磁力的电压控制来解决自旋Qubit的新技术,该技术通过使用磁各向异性(VCMA)的电压控制来说明。我们表明,通过调整纳米磁体的电场驱动器的频率,可以实现旋转的频率,并可以通过调节驱动器相位的相位,可以实现其延伸性的单量量子门,以接近用于耐故障量子计算的速度。这样的单量门操作具有显着的能源效率的优势,每个门操作只需要数十个femto-joules,而无损,纯粹的磁场控制(在目标体积上没有电子场)。使用现有的铸造制造技术,它们的身体认识也很简单。
Single-qubit gates are essential components of a universal quantum computer. Without selective addressing of individual qubits, scalable implementation of quantum algorithms is not possible. When the qubits are discrete points or regions on a lattice, the selective addressing of magnetic spin qubits at the nanoscale remains a challenge due to the difficulty of localizing and confining a classical divergence-free field to a small volume of space. Herein we propose a new technique for addressing spin qubits using voltage-control of nanoscale magnetism, exemplified by the use of voltage control of magnetic anisotropy (VCMA). We show that by tuning the frequency of the nanomagnet's electric field drive to the Larmor frequency of the spins confined to a nanoscale volume, and by modulating the phase of the drive, single-qubit quantum gates with fidelities approaching those for fault-tolerant quantum computing can be implemented. Such single-qubit gate operations have the advantage of remarkable energy efficiency, requiring only tens of femto-Joules per gate operation, and lossless, purely magnetic field control (no E-field over the target volume). Their physical realization is also straightforward using existing foundry manufacturing techniques.