论文标题

喷气式空间中没有周期性的测量学

No Periodic Geodesics in Jet Space

论文作者

Bravo-Doddoli, Alejandro

论文摘要

$ j^k $空间的$ k $ - 一个真实变量$ x $的真实功能的$ jets承认了一个子侵袭性歧管的结构,然后具有关联的汉密尔顿大地测量流,并且是可集成的。就像在任何哈密顿流动中一样,一个自然的问题是周期性解决方案的存在。 $ j^k $有定期的测量学吗?这项研究将为地球流的$ t^*j^k $中的动作角度坐标发现,并证明$ J^k $中的大地测量从来都不是周期性的。

The $J^k$ space of $k$-jets of a real function of one real variable $x$ admits the structure of a sub-Riemannian manifold, which then has an associated Hamiltonian geodesic flow, and it is integrable. As in any Hamiltonian flow, a natural question is the existence of periodic solutions. Does $J^k$ have periodic geodesics? This study will find the action-angle coordinates in $T^*J^k$ for the geodesic flow and demonstrate that geodesics in $J^k$ are never periodic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源