论文标题

关于静电问题和新的$ \ mathbb {r}^3 $的新的特殊子域

On an electrostatic problem and a new class of exceptional subdomains of $\mathbb{R}^3$

论文作者

Fall, Mouhamed Moustapha, Minlend, Ignace Aristide, Weth, Tobias

论文摘要

我们研究了非平凡的无界表面的存在$ s \ subset \ mathbb {r}^3 $与$ s $上的恒定电荷分布是静电平衡的属性,即产生的静电力是$ s $的每个点的表面。在有限的常规表面$ s $中,只有Reichel $ [23] $的结果(另请参见Mendez and Reichel $ [16] $)才能确认P. Gruber的猜想。在本文中,我们显示了非平凡的异常域的存在$ω\ subset \ mathbb {r}^3 $的边界$ s = \partialΩ$享受上述属性。

We study the existence of nontrivial unbounded surfaces $S\subset \mathbb{R}^3$ with the property that the constant charge distribution on $S$ is an electrostatic equilibrium, i.e. the resulting electrostatic force is normal to the surface at each point on $S$. Among bounded regular surfaces $S$, only the round sphere has this property by a result of Reichel $[23]$ (see also Mendez and Reichel $[16]$) confirming a conjecture of P. Gruber. In the present paper, we show the existence of nontrivial exceptional domains $Ω\subset \mathbb{R}^3$ whose boundaries $S=\partial Ω$ enjoy the above property.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源