论文标题
NL-FCO:通过非本地模块改善FCO以进行对象检测
NL-FCOS: Improving FCOS through Non-Local Modules for Object Detection
论文作者
论文摘要
在过去的几年中,我们已经看到了对象检测任务的重大进展,这主要是由于卷积神经网络的表现效果优于。在这种情况下,基于锚的模型取得了最佳结果。但是,这些模型需要有关目标对象的方面和尺度的事先信息,需要更多的超参数才能适合。此外,使用锚来安装边界框似乎远非我们的视觉系统执行相同的视觉任务。取而代之的是,我们的视觉系统使用不同场景部分的交互来识别称为感知分组的对象。靠近自然模型的对象检测方法是无锚检测,其中FCOS或Centernet之类的模型显示出竞争性的结果,但是这些模型尚未利用感知分组的概念。因此,为了提高无锚模型的有效性,保持推理时间较低,我们建议添加非本地关注(NL模块)模块以增强基础骨架的特征图。 NL模块实施了感知分组机制,使接受领域可以在视觉表示学习中进行合作。我们表明,与FCOS头(NL-FCO)相结合的非本地模块是实用有效的。因此,我们在服装检测和手写量识别问题方面建立了最先进的表现。
During the last years, we have seen significant advances in the object detection task, mainly due to the outperforming results of convolutional neural networks. In this vein, anchor-based models have achieved the best results. However, these models require prior information about the aspect and scales of target objects, needing more hyperparameters to fit. In addition, using anchors to fit bounding boxes seems far from how our visual system does the same visual task. Instead, our visual system uses the interactions of different scene parts to semantically identify objects, called perceptual grouping. An object detection methodology closer to the natural model is anchor-free detection, where models like FCOS or Centernet have shown competitive results, but these have not yet exploited the concept of perceptual grouping. Therefore, to increase the effectiveness of anchor-free models keeping the inference time low, we propose to add non-local attention (NL modules) modules to boost the feature map of the underlying backbone. NL modules implement the perceptual grouping mechanism, allowing receptive fields to cooperate in visual representation learning. We show that non-local modules combined with an FCOS head (NL-FCOS) are practical and efficient. Thus, we establish state-of-the-art performance in clothing detection and handwritten amount recognition problems.