论文标题

具有相同长度的所有引起的定向周期的挖掘图不是$ \ \vecχ$。

Digraphs with all induced directed cycles of the same length are not $\vecχ$-bounded

论文作者

Carbonero, Alvaro, Hompe, Patrick, Moore, Benjamin, Spirkl, Sophie

论文摘要

对于$ t \ ge 2 $,如果所有诱导的定向周期$ d $的长度等于$ t $,则让我们称为Digraph $ d $ \ emph {t-chordal}。在上一篇论文中,我们询问了哪个$ t $的确是有界数的$ t $兄弟式图具有有限的二分法数。最近,Aboulker,Bousquet和de Verclos以$ t = 3 $的负面回答,也就是说,他们给出了$ 3 $的和差的挖掘机,其中包含$ 3 $的总数和任意较大的二分音数字。在本文中,我们扩展了它们的结果,给出了每个$ t \ ge 3 $ a的构造,其中包数为$ 3 $和任意大的二分法数,从而以负面的方式回答了我们的问题。另一方面,我们表明,一个更受限制的类,没有诱导的定向周期小于$ t $的digraphs,并且没有引起的定向$ t $ vertex路径,如果其集团数字有限,则具有界限二十五章。我们还显示了以下复杂性结果:对于固定的$ t \ ge 2 $,确定digraph是$ t $ - 句号的问题。

For $t \ge 2$, let us call a digraph $D$ \emph{t-chordal} if all induced directed cycles in $D$ have length equal to $t$. In a previous paper, we asked for which $t$ it is true that $t$-chordal graphs with bounded clique number have bounded dichromatic number. Recently, Aboulker, Bousquet, and de Verclos answered this in the negative for $t=3$, that is, they gave a construction of $3$-chordal digraphs with clique number at most $3$ and arbitrarily large dichromatic number. In this paper, we extend their result, giving for each $t \ge 3$ a construction of digraphs with clique number at most $3$ and arbitrarily large dichromatic number, thus answering our question in the negative. On the other hand, we show that a more restricted class, digraphs with no induced directed cycle of length less than $t$, and no induced directed $t$-vertex path, have bounded dichromatic number if their clique number is bounded. We also show the following complexity result: for fixed $t \ge 2$, the problem of determining whether a digraph is $t$-chordal is coNP-complete.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源