论文标题

可控图像翻译的样式感知歧视器

A Style-aware Discriminator for Controllable Image Translation

论文作者

Kim, Kunhee, Park, Sanghun, Jeon, Eunyeong, Kim, Taehun, Kim, Daijin

论文摘要

当前的图像到图像翻译不能控制训练过程中使用的类别以外的输出域,也不会很好地插入不同域之间的插值,从而导致令人难以置信的结果。由于标签不考虑语义距离,因此基本上出现了这种限制。为了减轻此类问题,我们提出了一个风格感知的歧视者,该歧视者充当评论家以及风格编码器,以提供条件。风格感知的歧视者使用基于原型的自我监督学习学习了可控的样式空间,并同时指导发电机。多个数据集上的实验验证了所提出的模型的表现优于当前最新图像到图像转换方法。与当前方法相反,所提出的方法支持各种应用程序,包括样式插值,内容移植和本地图像翻译。

Current image-to-image translations do not control the output domain beyond the classes used during training, nor do they interpolate between different domains well, leading to implausible results. This limitation largely arises because labels do not consider the semantic distance. To mitigate such problems, we propose a style-aware discriminator that acts as a critic as well as a style encoder to provide conditions. The style-aware discriminator learns a controllable style space using prototype-based self-supervised learning and simultaneously guides the generator. Experiments on multiple datasets verify that the proposed model outperforms current state-of-the-art image-to-image translation methods. In contrast with current methods, the proposed approach supports various applications, including style interpolation, content transplantation, and local image translation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源