论文标题

对上下文感知对象探测器的零质量传输攻击

Zero-Query Transfer Attacks on Context-Aware Object Detectors

论文作者

Cai, Zikui, Rane, Shantanu, Brito, Alejandro E., Song, Chengyu, Krishnamurthy, Srikanth V., Roy-Chowdhury, Amit K., Asif, M. Salman

论文摘要

对抗性攻击的扰动图像,使深度神经网络产生不正确的分类结果。防御自然多对象场景的对抗性攻击的一种有希望的方法是施加上下文一致性检查,其中,如果检测到的对象与适当定义的上下文不一致,则怀疑攻击。需要更强烈的攻击来欺骗这种感知的探测器。我们提出了生成上下文一致的对抗攻击的第一种方法,该方法可以逃避在复杂自然场景上运行的黑框对象检测器的上下文一致性检查。与许多执行重复尝试并开放自我检测的黑盒攻击不同,我们假设一个“零快速”设置,攻击者不了解受害者系统的分类决策。首先,我们得出了多个攻击计划,这些计划以上下文一致的方式将不正确的标签分配给受害者对象。然后,我们设计和使用一种新型的数据结构,我们称之为扰动成功概率矩阵,这使我们能够过滤攻击计划并选择最有可能成功的攻击计划。该最终攻击计划是使用扰动构建的对抗攻击算法实现的。我们将我们的零次数攻击与一些疑问计划进行比较,该计划反复检查受害者系统是否被愚弄。我们还将与最新的上下文不合SNOSTIC攻击进行比较。在环境感知的防御中,我们的零疑问方法的愚蠢率显着高于上下文不合时宜的方法,并且比最多三轮次数方案可以实现的愚蠢率更高。

Adversarial attacks perturb images such that a deep neural network produces incorrect classification results. A promising approach to defend against adversarial attacks on natural multi-object scenes is to impose a context-consistency check, wherein, if the detected objects are not consistent with an appropriately defined context, then an attack is suspected. Stronger attacks are needed to fool such context-aware detectors. We present the first approach for generating context-consistent adversarial attacks that can evade the context-consistency check of black-box object detectors operating on complex, natural scenes. Unlike many black-box attacks that perform repeated attempts and open themselves to detection, we assume a "zero-query" setting, where the attacker has no knowledge of the classification decisions of the victim system. First, we derive multiple attack plans that assign incorrect labels to victim objects in a context-consistent manner. Then we design and use a novel data structure that we call the perturbation success probability matrix, which enables us to filter the attack plans and choose the one most likely to succeed. This final attack plan is implemented using a perturbation-bounded adversarial attack algorithm. We compare our zero-query attack against a few-query scheme that repeatedly checks if the victim system is fooled. We also compare against state-of-the-art context-agnostic attacks. Against a context-aware defense, the fooling rate of our zero-query approach is significantly higher than context-agnostic approaches and higher than that achievable with up to three rounds of the few-query scheme.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源