论文标题

倾斜理论I:基础的粉丝和多面有

Fans and polytopes in tilting theory I: Foundations

论文作者

Aoki, Toshitaka, Higashitani, Akihiro, Iyama, Osamu, Kase, Ryoichi, Mizuno, Yuya

论文摘要

对于一个有限维数代数$ a $在字段$ k $上,$ a $的2项淤积络合物可提供一个简单的复合物$δ(a)$,称为$ g $ $ $ simplicial complect。我们给出$ H $ - 向量和Dehn-Sommerville方程$δ(a)$的倾斜理论解释。使用$ g $ - 向量的2-级淤积络合物,$δ(a)$在真正的grothendieck组中提供了非发明的粉丝$σ(a)$ $σ(a)$ $ k_0(\ mathsf {proj} a)_ {\ mathbb {rsbb {r}} $称为$ g $ fan。我们提供了$σ(a)$的几个基本属性,包括标志固定,符号分解,diDempotent降低,Jasso降低,成对阳性以及与$ A $ A $ A-Modules的Newton Polytopes的连接。此外,$σ(a)$给出了$ k_0(\ mathsf {proj} a)_ {\ mathbb {r}} $称为$ g $ -polytope of $ a $ a $ a $ a $ a $ a $ a $。如果$ p(a)$是凸,我们称$ a $ g $ -convex。在这种情况下,我们表明它是一种反身层,并且双重多层由$ a $的两项简单志同道合收藏给出。恰好有7个凸出$ g $ - polyogons to Insomorphism。我们提供了代数的分类,其$ g $ - polytopes是顺畅的。 我们研究了两个重要类别的代数类别的$ g $ - 粉丝和$ g $ - $ - 聚会。我们表明,Coxeter风扇给出了经典或广义前代数的$ G $ fan。它是$ g $ -convex,并且仅当它是类型$ a $ a $ a或$ b $的,在这种情况下,其$ g $ - polytope是短根polytope的双重多层。此外,我们将Brauer图代数分类为$ G $ -CONVEX,并将其$ g $ - polytopes描述为$ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ g $ convex。

For a finite dimensional algebra $A$ over a field $k$, the 2-term silting complexes of $A$ gives a simplicial complex $Δ(A)$ called the $g$-simplicial complex. We give tilting theoretic interpretations of the $h$-vectors and Dehn-Sommerville equations of $Δ(A)$. Using $g$-vectors of 2-term silting complexes, $Δ(A)$ gives a nonsingular fan $Σ(A)$ in the real Grothendieck group $K_0(\mathsf{proj} A)_{\mathbb{R}}$ called the $g$-fan. We give several basic properties of $Σ(A)$ including sign-coherence, sign decomposition, idempotent reductions, Jasso reductions, pairwise positivity and a connection with Newton polytopes of $A$-modules. Moreover, $Σ(A)$ gives a (possibly infinite and non-convex) polytope $P(A)$ in $K_0(\mathsf{proj} A)_{\mathbb{R}}$ called the $g$-polytope of $A$. We call $A$ $g$-convex if $P(A)$ is convex. In this case, we show that it is a reflexive polytope, and that the dual polytope is given by the 2-term simple minded collections of $A$. There are precisely 7 convex $g$-polyogons up to isomorphism. We give a classification of algebras whose $g$-polytopes are smooth Fano. We study $g$-fans and $g$-polytopes of two important classes of algebras. We show that the $g$-fan of a classical or generalized preprojective algebra is given by the Coxeter fan. It is $g$-convex if and only if it is of type $A$ or $B$, and in this case, its $g$-polytope is the dual polytope of the short root polytope. Moreover we classify Brauer graph algebras which are $g$-convex, and describe their $g$-polytopes as the root polytopes of type $A$ or $C$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源