论文标题
迭代,深度合成孔径声纳图像分割
Iterative, Deep Synthetic Aperture Sonar Image Segmentation
论文作者
论文摘要
合成的光圈声纳(SAS)系统产生海底环境的高分辨率图像。此外,深度学习表现出较高的能力,可以找到自动化图像分析的强大功能。但是,深度学习的成功基于拥有大量标记的培训数据,但是获得SAS图像的大量像素级注释通常实际上是不可行的。到目前为止,这一挑战限制了采用深度学习方法来进行SAS细分。存在算法以无监督的方式分割SAS图像,但是它们缺乏最先进的学习方法的好处,结果具有很大的改进空间。鉴于上述,我们为无监督的SAS图像分割提出了一种新的迭代算法,结合了超像素形成,深度学习和传统的聚类方法。我们称我们的方法迭代深度无监督分段(IDU)。 IDU是一个无监督的学习框架,可以分为四个主要步骤:1)深层网络估计类分配。 2)深网的低级图像特征聚集在超级像素中。 3)使用$ k $ -Means将超级像素聚类为类分配(我们称为伪标签)。 4)由此产生的伪标签用于损失深网预测的反向传播。这四个步骤迭代执行直至收敛。与SAS图像分割的现实基准数据集上的IDU与当前最新方法的比较证明了我们的提案的好处,即使IDU在推理过程中产生了较低的计算负担(测试图像的实际标记)。最后,我们还开发了一个名为IDSS的IDU的半监督(SS)扩展,并在实验上证明它可以进一步提高性能,同时优于利用相同标记的训练图像的监督替代方案。
Synthetic aperture sonar (SAS) systems produce high-resolution images of the seabed environment. Moreover, deep learning has demonstrated superior ability in finding robust features for automating imagery analysis. However, the success of deep learning is conditioned on having lots of labeled training data, but obtaining generous pixel-level annotations of SAS imagery is often practically infeasible. This challenge has thus far limited the adoption of deep learning methods for SAS segmentation. Algorithms exist to segment SAS imagery in an unsupervised manner, but they lack the benefit of state-of-the-art learning methods and the results present significant room for improvement. In view of the above, we propose a new iterative algorithm for unsupervised SAS image segmentation combining superpixel formation, deep learning, and traditional clustering methods. We call our method Iterative Deep Unsupervised Segmentation (IDUS). IDUS is an unsupervised learning framework that can be divided into four main steps: 1) A deep network estimates class assignments. 2) Low-level image features from the deep network are clustered into superpixels. 3) Superpixels are clustered into class assignments (which we call pseudo-labels) using $k$-means. 4) Resulting pseudo-labels are used for loss backpropagation of the deep network prediction. These four steps are performed iteratively until convergence. A comparison of IDUS to current state-of-the-art methods on a realistic benchmark dataset for SAS image segmentation demonstrates the benefits of our proposal even as the IDUS incurs a much lower computational burden during inference (actual labeling of a test image). Finally, we also develop a semi-supervised (SS) extension of IDUS called IDSS and demonstrate experimentally that it can further enhance performance while outperforming supervised alternatives that exploit the same labeled training imagery.