论文标题
GAIA-ESO调查:薄磁盘中的化学标记。开放式簇在元素丰度空间中盲目恢复
The Gaia-ESO Survey: Chemical tagging in the thin disk. Open clusters blindly recovered in the elemental abundance space
论文作者
论文摘要
恒星的化学构成提供了形成环境的化石信息。在此前提下,应该可以使用化学丰度来标记在同一恒星关联内形成的星星。这个想法(称为化学标记)尚未产生预期的结果,尤其是在开放式恒星簇具有难以脱离的化学模式的薄磁盘中。这项研究的最终目标是使用受控恒星样本中的高质量数据探测薄磁盘种群中化学标记的可行性。我们还旨在改善化学标记的现有技术,并在元素丰度空间中对不同策略进行聚类分析的指导。在这里,我们使用应用于GAIA-ESO调查的数据的光学算法在元素丰度空间中的聚类分析来开发开放群集成员的第一次盲目搜索。首先,我们评估了不同的分析策略,确定哪些表现更具性能。其次,我们将这些方法应用于数据集,包括野外星和开放群集,试图盲目恢复尽可能多的开放式簇。我们展示了数据分析的特定策略如何改善最终结果。具体而言,我们证明可以通过曼哈顿度量标准和仔细选择尺寸的空间来更有效地恢复开放簇。使用这些(和其他)处方,我们能够恢复隐藏在数据集中的开放式簇,并找到这些出色关联的新成员。我们的结果表明,有机会通过在元素丰度空间中的聚类分析来恢复开放群集的成员。据推测,化学标记的性能将随着更高质量的数据和更复杂的聚类算法的进一步增加。
The chemical makeup of a star provides the fossil information of the environment where it formed. Under this premise, it should be possible to use chemical abundances to tag stars that formed within the same stellar association. This idea - known as chemical tagging - has not produced the expected results, especially within the thin disk where open stellar clusters have chemical patterns that are difficult to disentangle. The ultimate goal of this study is to probe the feasibility of chemical tagging within the thin disk population using high-quality data from a controlled sample of stars. We also aim at improving the existing techniques of chemical tagging and giving guidance on different strategies of clustering analysis in the elemental abundance space. Here we develop the first blind search of open clusters' members through clustering analysis in the elemental abundance space using the OPTICS algorithm applied to data from the Gaia-ESO survey. First, we evaluate different strategies of analysis, determining which ones are more performing. Second, we apply these methods to a data set including both field stars and open clusters attempting a blind recover of as many open clusters as possible. We show how specific strategies of data analysis can improve the final results. Specifically, we demonstrate that open clusters can be more efficaciously recovered with the Manhattan metric and on a space whose dimensions are carefully selected. Using these (and other) prescriptions we are able to recover open clusters hidden in our data set and find new members of these stellar associations. Our results indicate that there are chances of recovering open clusters' members via clustering analysis in the elemental abundance space. Presumably, the performances of chemical tagging will further increase with higher quality data and more sophisticated clustering algorithms.