论文标题
紧凑型对称空间上的封闭的大地测量学
Closed geodesics on compact symmetric spaces of higher rank
论文作者
论文摘要
在本文中,我们考虑了一个紧凑的对称空间$ m $更高的排名。令$ p(t)$是一组免费的同性恋类别,其中包含$ m $的封闭测量,最多为$ t $,而$ \#p(t)$其基数。我们获得以下渐近估计:\ [\#p(t)= \ frac {e^{ht}} {ht} {ht}(1+o(e^{ - ut}))\]对于某些$ u> 0 $,其中$ h $是地理流的拓扑。
In this article, we consider a compact symmetric space $M$ of higher rank. Let $P(t)$ be the set of free-homotopy classes containing a closed geodesic on $M$ with length at most $t$, and $\# P(t)$ its cardinality. We obtain the following asymptotic estimates: \[\#P(t)=\frac{e^{ht}}{ht}(1+O(e^{-ut}))\] for some $u>0$, where $h$ is the topological entropy of the geodesic flow.