论文标题

Bloch定理在微腔晶体中指示波浪混乱

Bloch theorem dictated wave chaos in microcavity crystals

论文作者

Yi, Chang-Hwan, Park, Hee Chul, Park, Moon Jip

论文摘要

波浪混乱的通用类别出现在许多科学领域,例如分子动力学,光学和网络理论。在这项工作中,我们通过发现晶体动量与内腔动力学的内在耦合,将波浪混乱理论推广到腔晶格系统。腔体锁定锁定在普通单微腔问题中变形边界形状的作用,为微腔光动力学的原位研究提供了一个新的平台。周期性晶格中波浪混乱的变异导致相位空间重新配置,从而诱导动态定位过渡。退化的疤痕模式旋转器杂交和非平凡的岛屿在相位空间中定位。此外,我们发现动量耦合在Brillouin区域边界上变得最大,因此腔内混沌模式耦合和波浪限制会发生显着改变。我们的工作先驱者研究了周期系统中交织波混乱的研究,并在光动力控制中提供了有用的应用。

Universality class of wave chaos emerges in many areas of science, such as molecular dynamics, optics, and network theory. In this work, we generalize the wave chaos theory to cavity lattice systems by discovering the intrinsic coupling of the crystal momentum to the internal cavity dynamics. The cavity-momentum locking substitutes the role of the deformed boundary shape in the ordinary single microcavity problem, providing a new platform for the in situ study of microcavity light dynamics. The transmutation of wave chaos in periodic lattices leads to a phase space reconfiguration that induces a dynamical localization transition. The degenerate scar-mode spinors hybridize and non-trivially localize around regular islands in phase space. In addition, we find that the momentum coupling becomes maximal at the Brillouin zone boundary, so the intercavity chaotic modes coupling and wave confinement are significantly altered. Our work pioneers the study of intertwining wave chaos in periodic systems and provide useful applications in light dynamics control.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源