论文标题
部分做到这一点:向场景级的FG-SBIR进行部分输入
Partially Does It: Towards Scene-Level FG-SBIR with Partial Input
论文作者
论文摘要
我们仔细检查了一个重要的观察场景级草图研究 - 场景草图的很大一部分是“部分”。快速的试点研究揭示了:(i)场景草图不一定包含相应照片中的所有对象,因为对场景的主观整体解释,(ii)由于对象级的抽象而导致的大量空(白色)区域,因此,(III)现有的场景级别的基于良好的良好的基于良好的图像图像检索方法胶合起来的场景变得更多。为了解决这个“部分”问题,我们主张使用最佳传输(OT)以部分意识的方式建模跨模式区域关联的简单方法。重要的是,我们通过比较模式内邻接矩阵来进一步改善OT,以进一步说明整体局势。我们提出的方法不仅对部分场景 - 佐剂是可靠的,而且在现有数据集上产生最先进的性能。
We scrutinise an important observation plaguing scene-level sketch research -- that a significant portion of scene sketches are "partial". A quick pilot study reveals: (i) a scene sketch does not necessarily contain all objects in the corresponding photo, due to the subjective holistic interpretation of scenes, (ii) there exists significant empty (white) regions as a result of object-level abstraction, and as a result, (iii) existing scene-level fine-grained sketch-based image retrieval methods collapse as scene sketches become more partial. To solve this "partial" problem, we advocate for a simple set-based approach using optimal transport (OT) to model cross-modal region associativity in a partially-aware fashion. Importantly, we improve upon OT to further account for holistic partialness by comparing intra-modal adjacency matrices. Our proposed method is not only robust to partial scene-sketches but also yields state-of-the-art performance on existing datasets.