论文标题
摩尔光谱上的乘法结构
Multiplicative structures on Moore spectra
论文作者
论文摘要
在本文中,我们表明$ \ mathbb {s}/8 $是$ \ mathbb {e} _1 $ -Algebra,$ \ Mathbb {s}/32 $是$ \ mathbb {e} $ \ mathbb {e} _n $ -Algebra在奇数上,更一般而言,每$ h $和$ n $都存在$ h $的通用摩尔光谱,这些频谱$ h $,这些光谱允许$ \ m athbb {e} _n $ algebra结构。
In this article we show that $\mathbb{S}/8$ is an $\mathbb{E}_1$-algebra, $\mathbb{S}/32$ is an $\mathbb{E}_2$-algebra, $\mathbb{S}/p^{n+1}$ is an $\mathbb{E}_n$-algebra at odd primes and, more generally, for every $h$ and $n$ there exist generalized Moore spectra of type $h$ which admit an $\mathbb{E}_n$-algebra structure.