论文标题
关键的分支随机步行在球上度过的时间
Time spent in a ball by a critical branching random walk
论文作者
论文摘要
我们在$ \ mathbb z^d $上研究关键的分支随机步行。我们专注于在球上花费的时间,而我们的研究在四个及以上的研究中阐明了Angel,Hutchcroft和Jarai的最新结果,尤其是关于关键维度四的特殊特征。最后,我们分析了通过分支随机步行在遥远球边界上传输的步行数量。
We study a critical branching random walk on $\mathbb Z^d$. We focus on the tail of the time spent in a ball, and our study, in dimension four and higher, sheds new light on the recent result of Angel, Hutchcroft and Jarai, in particular on the special features of the critical dimension four. Finally, we analyse the number of walks transported by the branching random walk on the boundary of a distant ball.