论文标题
Brownian储层计算使用几何限制的天空实现
Brownian reservoir computing realized using geometrically confined skyrmions
论文作者
论文摘要
储层计算(RC)被认为是冯·尼曼计算以外的关键计算原理之一。磁性天空,磁性膜中的拓扑颗粒状旋转纹理对于实现RC特别有希望,因为它们对外部刺激的反应强烈,并且具有固有的多尺度动力学。然而,尽管有一些关于天际水库计算的理论建议,但到目前为止,实验实现仍然难以捉摸。在这里,我们提出并在实验上展示了一种用于Skyrmion RC的新方法,该方法利用了Skyrmions的热激活扩散运动。通过限制电路和热天空运动,我们发现已经在限制几何形状中的单个天空足以实现非线性可分离的函数,我们为XOR Gate与所有其他Boolean逻辑门操作一起证明了这一点。除了这种通用性外,储层计算概念还可以确保低训练成本和超低功率操作,而当前密度的数量级比现有的Spintronic储层计算示范中的密度小。我们提出的概念可以通过将多个限制的几何形状和/或在储层中包含更多的天空中进行链接,从而很容易扩展,这表明具有可扩展和低能量储层计算的高潜力。
Reservoir computing (RC) has been considered as one of the key computational principles beyond von-Neumann computing. Magnetic skyrmions, topological particle-like spin textures in magnetic films are particularly promising for implementing RC, since they respond strongly nonlinear to external stimuli and feature inherent multiscale dynamics. However, despite several theoretical proposals that exist for skyrmion reservoir computing, experimental realizations have been elusive until now. Here, we propose and experimentally demonstrate a conceptually new approach to skyrmion RC that leverages the thermally activated diffusive motion of skyrmions. By confining the electrically gated and thermal skyrmion motion, we find that already a single skyrmion in a confined geometry suffices to realize non-linearly separable functions, which we demonstrate for the XOR gate along with all other Boolean logic gate operations. Besides this universality, the reservoir computing concept ensures low training costs and ultra-low power operation with current densities orders of magnitude smaller than those used in existing spintronic reservoir computing demonstrations. Our proposed concept can be readily extended by linking multiple confined geometries and/or by including more skyrmions in the reservoir, suggesting high potential for scalable and low-energy reservoir computing.