论文标题
开放研究知识图中生物测定的数字化
The Digitalization of Bioassays in the Open Research Knowledge Graph
论文作者
论文摘要
背景:近年来,在知识图中科学实体的细粒度水平的学术知识中,在学术知识中的动力越来越大。开放研究知识图(ORKG)https://www.orkg.org/代表了朝这个方向迈出的重要一步,成千上万的学术贡献是结构化的,精细的机器可读数据。但是,有必要在传统的社区实践中改变记录贡献的传统社区实践,这是非结构化的,不可读的文本。反过来,对于为科学家而设计的AI工具非常需要,这些工具允许对其学术贡献进行轻松准确的语义化。我们提出一个这样的工具,即ORKG-says。实施:ORKG-says是用Python编写的ORKG免费提供的AI微服务,旨在帮助科学家获得语义化的生物测定作为一组三元组。它使用基于AI的聚类算法,该算法在900多种生物测定的金标准评估中,具有5,514个独特的属性值对,用于103个谓词,显示出竞争性的性能。结果和讨论:结果,可以通过制表或基于图表的化学物质的关键性能和化合物在ORKG平台上进行语义分析收集,从而在药物开发的进步方面可访问生物化学家和制药研究人员。
Background: Recent years are seeing a growing impetus in the semantification of scholarly knowledge at the fine-grained level of scientific entities in knowledge graphs. The Open Research Knowledge Graph (ORKG) https://www.orkg.org/ represents an important step in this direction, with thousands of scholarly contributions as structured, fine-grained, machine-readable data. There is a need, however, to engender change in traditional community practices of recording contributions as unstructured, non-machine-readable text. For this in turn, there is a strong need for AI tools designed for scientists that permit easy and accurate semantification of their scholarly contributions. We present one such tool, ORKG-assays. Implementation: ORKG-assays is a freely available AI micro-service in ORKG written in Python designed to assist scientists obtain semantified bioassays as a set of triples. It uses an AI-based clustering algorithm which on gold-standard evaluations over 900 bioassays with 5,514 unique property-value pairs for 103 predicates shows competitive performance. Results and Discussion: As a result, semantified assay collections can be surveyed on the ORKG platform via tabulation or chart-based visualizations of key property values of the chemicals and compounds offering smart knowledge access to biochemists and pharmaceutical researchers in the advancement of drug development.