论文标题

开放研究知识图中生物测定的数字化

The Digitalization of Bioassays in the Open Research Knowledge Graph

论文作者

D'Souza, Jennifer, Monteverdi, Anita, Haris, Muhammad, Anteghini, Marco, Farfar, Kheir Eddine, Stocker, Markus, Santos, Vitor A. P. Martins dos, Auer, Sören

论文摘要

背景:近年来,在知识图中科学实体的细粒度水平的学术知识中,在学术知识中的动力越来越大。开放研究知识图(ORKG)https://www.orkg.org/代表了朝这个方向迈出的重要一步,成千上万的学术贡献是结构化的,精细的机器可读数据。但是,有必要在传统的社区实践中改变记录贡献的传统社区实践,这是非结构化的,不可读的文本。反过来,对于为科学家而设计的AI工具非常需要,这些工具允许对其学术贡献进行轻松准确的语义化。我们提出一个这样的工具,即ORKG-says。实施:ORKG-says是用Python编写的ORKG免费提供的AI微服务,旨在帮助科学家获得语义化的生物测定作为一组三元组。它使用基于AI的聚类算法,该算法在900多种生物测定的金标准评估中,具有5,514个独特的属性值对,用于103个谓词,显示出竞争性的性能。结果和讨论:结果,可以通过制表或基于图表的化学物质的关键性能和化合物在ORKG平台上进行语义分析收集,从而在药物开发的进步方面可访问生物化学家和制药研究人员。

Background: Recent years are seeing a growing impetus in the semantification of scholarly knowledge at the fine-grained level of scientific entities in knowledge graphs. The Open Research Knowledge Graph (ORKG) https://www.orkg.org/ represents an important step in this direction, with thousands of scholarly contributions as structured, fine-grained, machine-readable data. There is a need, however, to engender change in traditional community practices of recording contributions as unstructured, non-machine-readable text. For this in turn, there is a strong need for AI tools designed for scientists that permit easy and accurate semantification of their scholarly contributions. We present one such tool, ORKG-assays. Implementation: ORKG-assays is a freely available AI micro-service in ORKG written in Python designed to assist scientists obtain semantified bioassays as a set of triples. It uses an AI-based clustering algorithm which on gold-standard evaluations over 900 bioassays with 5,514 unique property-value pairs for 103 predicates shows competitive performance. Results and Discussion: As a result, semantified assay collections can be surveyed on the ORKG platform via tabulation or chart-based visualizations of key property values of the chemicals and compounds offering smart knowledge access to biochemists and pharmaceutical researchers in the advancement of drug development.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源