论文标题

在随机实验中通过通用机器学习发现的异质治疗效果的统计推断

Statistical Inference for Heterogeneous Treatment Effects Discovered by Generic Machine Learning in Randomized Experiments

论文作者

Imai, Kosuke, Li, Michael Lingzhi

论文摘要

研究人员越来越多地转向机器学习(ML)算法,以研究随机实验中的因果异质性。尽管有希望,ML算法可能无法准确确定许多协变量和较小样本量的实际设置下的异质治疗效果。此外,估计不确定性的量化仍然是一个挑战。我们开发了一种通用方法来针对通用ML算法发现的异质治疗效应。我们将Neyman的重复采样框架应用于共同环境,在该环境中,研究人员使用ML算法来估计条件平均治疗效果,然后根据估计效应的幅度将样品分为几组。我们展示了如何估算每个组中每个组中的平均治疗效果,并构建一个有效的置信区间。此外,我们开发了跨组的治疗效应均匀性的非参数测试,以及组内平均治疗效应的一致性。我们方法论的有效性不依赖于ML算法的性质,因为它仅基于治疗分配和单位的随机抽样的随机化。最后,我们通过考虑数据随机分裂引起的其他不确定性,将方法概括为交叉拟合程序。

Researchers are increasingly turning to machine learning (ML) algorithms to investigate causal heterogeneity in randomized experiments. Despite their promise, ML algorithms may fail to accurately ascertain heterogeneous treatment effects under practical settings with many covariates and small sample size. In addition, the quantification of estimation uncertainty remains a challenge. We develop a general approach to statistical inference for heterogeneous treatment effects discovered by a generic ML algorithm. We apply the Neyman's repeated sampling framework to a common setting, in which researchers use an ML algorithm to estimate the conditional average treatment effect and then divide the sample into several groups based on the magnitude of the estimated effects. We show how to estimate the average treatment effect within each of these groups, and construct a valid confidence interval. In addition, we develop nonparametric tests of treatment effect homogeneity across groups, and rank-consistency of within-group average treatment effects. The validity of our methodology does not rely on the properties of ML algorithms because it is solely based on the randomization of treatment assignment and random sampling of units. Finally, we generalize our methodology to the cross-fitting procedure by accounting for the additional uncertainty induced by the random splitting of data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源