论文标题

使用SDO/HMI矢量磁数据产品和双向LSTM网络预测太阳能颗粒

Predicting Solar Energetic Particles Using SDO/HMI Vector Magnetic Data Products and a Bidirectional LSTM Network

论文作者

Abduallah, Yasser, Jordanova, Vania K., Liu, Hao, Li, Qin, Wang, Jason T. L., Wang, Haimin

论文摘要

太阳能颗粒(SEP)是空间辐射的重要来源,它是人类在太空,航天器和技术中的危害。在本文中,我们提出了一种深度学习方法,特别是双向长期的短期记忆(BilstM)网络,以预测(i)AR会产生M-或X级耀斑和冠状质量弹性(cme)是否会产生与耀斑相关的M-或ii不相关的M-c-c-c-clare flare a aR是否会产生M-或X级质量弹性(CME),是否会产生AR是否会产生sep事件。本研究中使用的数据样本是从国家环境信息中心提供的地静止操作环境卫星的X射线火炬目录中收集的。我们在2010年至2021年期间选择了目录中标识的ARS的M-和X级耀斑,并在同一时期的通知,知识,信息的空间天气数据库中找到耀斑,CME和SEP的关联。每个数据样本都包含从空调震动和磁性成像器收集的物理参数,太阳能动力学天文台。基于不同性能指标的实验结果表明,针对此处研究的两个SEP预测任务,所提出的Bilstm网络比相关的机器学习算法更好。我们还讨论了通过经验评估的概率预测和校准方法的扩展。

Solar energetic particles (SEPs) are an essential source of space radiation, which are hazards for humans in space, spacecraft, and technology in general. In this paper we propose a deep learning method, specifically a bidirectional long short-term memory (biLSTM) network, to predict if an active region (AR) would produce an SEP event given that (i) the AR will produce an M- or X-class flare and a coronal mass ejection (CME) associated with the flare, or (ii) the AR will produce an M- or X-class flare regardless of whether or not the flare is associated with a CME. The data samples used in this study are collected from the Geostationary Operational Environmental Satellite's X-ray flare catalogs provided by the National Centers for Environmental Information. We select M- and X-class flares with identified ARs in the catalogs for the period between 2010 and 2021, and find the associations of flares, CMEs and SEPs in the Space Weather Database of Notifications, Knowledge, Information during the same period. Each data sample contains physical parameters collected from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. Experimental results based on different performance metrics demonstrate that the proposed biLSTM network is better than related machine learning algorithms for the two SEP prediction tasks studied here. We also discuss extensions of our approach for probabilistic forecasting and calibration with empirical evaluation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源