论文标题
模糊几何形状的纠缠熵和物质奖励耦合
Entanglement Entropy and Matter-Gravity Couplings for Fuzzy Geometry
论文作者
论文摘要
在这次演讲中,我讨论了模糊几何形状的纠缠熵的某些特征,重点是其对背景字段的依赖以及在大$ n $限制中的新兴连续歧管的旋转连接。使用Landau-hall范式进行模糊的几何形状,这被认为是通过广义的Chern-Simons形式给出的,这与重力的热力学视图相关。在同一框架中也考虑了物质重视联轴器;它们自然会导致某些涉及曲率力量的特定特定的非最小耦合。
In this talk I discuss some features of the entanglement entropy for fuzzy geometry, focusing on its dependence on the background fields and the spin connection of the emergent continuous manifold in a large $N$ limit. Using the Landau-Hall paradigm for fuzzy geometry, this is argued to be given by a generalized Chern-Simons form, making a point of connection with the thermodynamic view of gravity. Matter-gravity couplings are also considered in the same framework; they naturally lead to certain specific nonminimal couplings involving powers of the curvature.